Different mechanisms and pathways for
perceiving objects, sets, and ensembles
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We do not see the world like this
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Spatial layout of the scene
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Objects, Sets, and Ensembles
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Individual object

e One-to-one correspondence

between objects

® Perceiving or remembering

features of individual objects

|
+
Memory + ‘
array
Delay +|:| |
Color?
Test array

Luck & Vogel, 1997
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Sets of objects Ensemble
® One-to-one correspondence  ® Averaging
between objects or sets
e Chunking
+

F-B-I-C-I-A-N-S-A-C-A-T
FBI-CIA-NSA-

* Grouping

- Average hue
(Maule & Franklin, 2015)

- Average size (Ariely, 2001)

®* Numerosity estimation

- Approximate number
(Halberda et al., 2006)




Grouping and visual impression of number




How many dots do you see?

Trial 1 Trial 2 Trial 3 |

Answer: 14 | Answer:d1  Answer:4l |



Number estimation of sets and objects

Exp.1: How do we see sets? Exp.2: How do we see objects?

Stimulus Stimulus

Mask
320 msec

e Stimulus duration: 50, 99, 198, 330 msec

¢ 5-35 randomly located dots
Im, Zhong, & Halberda, 2016



Perceiving sets

s D Mean: 10.81
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Im, Zhong, & Halberda, 2016



Hierarchical grouping algorithm

lteration 1
# of groups: 23

lteration 2
# of groups: 18

Iteration
# of gropips: 13

teration N
# of groups: 1

Im, Zhong, & Halberda, 2016



Model-predicted grouping window size

Model prediction error = Model-predicted number of sets - human response
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Model prediction error

Mean of the best-fit grouping window size: 3.91°

“Track moving targets @ ”
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Bae & Flombaum, 2012

o 4 | | 4
Grouping window size (diameter)

Im, Zhong, & Halberda, 2016



Grouping can happen very quickly

N

W
U

L

Best-fit grouping window size ()

O 50 100 150 200 250 300 350
Stimulus duration (msec)

Im, Zhong, & Halberda, 2016



More grouping leads to more underestimation

Grouping Index =

Number of dots

Number of sets 50 R

*
*
*
.

Human responses

1 20 50

r=-0.86

1 2 3 4 5 6 7 8

Grouping Index Im, Zhong, & Halberda, 2016



Hierarchical coding of “set” and “object”
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How many ensembles can we remember?

Ready
+

Number of sets: 2-5

500 ms

O
1000 ms

1000 ms

+

Which set has
larger mean size?

Predicted accuracy for an ideal observer

Accuracy = 100*p + 50*(1 - p)
Two sets are Lucky guess
IN memory
p = probability that the two remembered

sets are tested from N sets displayed;
1/(N choose 2)

Capacity: 2.5 sets (on average)

100

O
o

Capacity - 2 sets

o
o

N
o
—

o~
o

Percentage correct (%)

Ul
o

2 sets 3 sets 4 sets 5 sets

Im & Chong, 2014



Grouping increased capacity limit of ensembles

Ready

Number of sets: 2-5

500 ms ‘
O

Which set has
1000 ms| |arger mean size?

+

Predicted accuracy for an ideal observer

Accuracy = 100*p + 50*(1 - p)

Two sets are Lucky guess

IN memory

p = probability that the two remembered
sets are tested from N sets displayed;

1/(N choose 2)

Capacity: 2.5 sets — 3.5 sets

100 | Intermixed display

O
o

o
o

N
o
—

o
o
—

Percentage correct (%)

Ul
o

—

2 sets 3 sets

W Grouped display

-
N

4 sets

5 sets

Im & Chong, 2014



Attentional selection of ensembles

Rerely vs. B vs. 2nd largest set
+ s B vs. B 2nd largest vs. 3rd largest set
O LB Il vs.  3rd largest vs. smallest set

® o °
500 ms ‘ FY
O
o ~+
1000 ms Task 1: Probe detection
N
30 or 60 ms +
Probe appeared at
a centroid of one
of the four sets. + Which set has
larger mean size?
+ B

2000 ms

Task 2: Mean size comparison

Im, Park, & Chong, 2015



Largest set attracted attention

Which set has
larger mean size?

VS. l vs. 2nd largest set

+ B B vs. B 2nd largest vs. 3rd largest set

Percent correct (%)
(@) ~ oo
) O O

Ul
o

N
()

Mean size comparison

Largest 2nd 3rd
Set to be selected

B vs. 3rdlargest vs. Smallest set

Probe detection

o)) ~
Ul o
O O

Detection time (msec)
o~
)
S

550 H/‘/‘

500

Largest 2nd  3rd Smallest
Centroid locations

Im, Park, & Chong, 2015



Can smallest set attract attention?

Which set has
smaller mean size?

vS. | 1st largest vs. 2nd largest set

+ B B vs. B 2nd largest vs.

Percent correct (%)
(@) ~ oo
) O O

Ul
o

N
()

Mean size comparison

2nd 3rd Smallest
Set to be selected

B vs. 3rdlargestvs.

Probe detection
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550

Detection time (msec)
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500

Largest 2nd  3rd Smallest
Centroid locations

Im, Park, & Chong, 2015



Attention toward an ensemble, not an object

Probe at the centroid of larger set
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Probe next to the largest individual

|

Centroid Largest
individual

Im, Park, & Chong, 2015



Ensembles as units of selection and storage
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Poorer segmentation of sets Better segmentation of sets
~2.5 sets in memory ~3.5 sets in memory

* Grouping increased memory capacity for
ensembles.
e Centroid of the largest set attracted attention.



How can ensembles be extracted so quickly?

Comparing ensembles Comparing individuals



Making emotional crowds

Angry 100% Angry 68%  Angry 60%  Angry 50% Angry 40%  Angry 32%
Happy 32% Happy 40% Happy 50% Happy 60% Happy 68% Happy 100%

51 morphed emotional faces

¢ Six identities (3 females, 3 males)

e Number of faces in a crowd: 4 or 6 (8 or 12 total)

Im et al., 2017



Which crowd would you rather avoid?




Which crowd would you rather avoid?
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Which crowd would you rather avoid?




Which crowd would you rather avoid?




Which crowd would you rather avoid?
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Crowd emotion vs. Individual emotion

Im et al., 2017



Parallel processing of crowd emotion

8 faces

n.s.

~
O
1

O~
@
I

o~
O
T

Accuracy (%)

Ul
Ul
I

o
o

8 faces 12 faces

RT (sec)

0.9

0.8

B n.s.

12 faces

Individual
condition

8 faces 12 faces
Im et al., 2017



Emotional distance between crowds
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Gender of tacial crowds

80T .~ Male faces
S " Female faces
o 70
O
O
g 60
O
O
ol
50 |

Angry Happy Angry Happy
Im et al., 2017



Intermixed identities

Same  Mixed
identity identity

Im et al., 2017



Angry (LVF)

Laterality effects: Crowd vs. Individual

/
Choosing
angrier crowd

Accuracy (%)

oo
o

~
o

N
o

Ul
O

s

Crowd emotion

Neutral (RVF) Neutral (LVF) Happy (RVF)

\
Choosing
relatively

angrier crowd

LVF  RVF

*

Choosing
angry over
neutral

Individual emotion
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Im et al., 2017



Task-dependent laterality effects for crowds

Crowd emotion: Avoidance task
Angry (LVF) Neutral (RVF) Neutral (LVF) Happy (RVF)

\
Choosing
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Control: Approach task

Neutral (LVF)

ChOO&hg
relatively
happier crowd
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O O O

Accuracy (%)
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O
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QQ

Chooang
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Im et al., 2017



fMRI results: Crowd vs. Individual

SFG SFG
MFG SPL MFG
IFG IFG

OFC

IPS

t=5
Individual

Left Hemisphere Right Hemisphere

Im et al., 2017



Dorsal and ventral pathways

e Quick and dirty
processing of global,
low-spatial frequency

* Goal-dependent, rapid
action execution

nocellular (M)
—=w._ \. Input

* Detailed visual
processing of high-
spatial frequency
information

-

Parvocellular (P)
input

orientation averaging or luminance change detection task

200 ms 1800 ms
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Tark et al., poster at VSS 2017




Region-of-Interest analysis

Superior frontal gyrus

Intraparietal sulcus

Fusiform cortex
Amygdala

M/P localizer

M stimulus > P stimulus P stimulus > M stimulus

subject 1
M subject 2
subject 3

Im et al., 2017



M- and P-pathways for crowd and individual emotion

Superior frontal gyrus

Intraparietal sulcus

Amygdala

Fusiform cortex

0.12
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Im et al., 2017



Brain areas predicting accuracy for crowds and individuals
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Magnocellular bias for crowd emotion perception

Magnocellular (M) biased Parvocellular (P) biased
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M-biased P-biased

Im et al., in preparation



Goal-dependent laterality effects for M-biased stimuli

Magnocellular (M) biased Parvocellular (P) biased
80T LVF RVF LVF RVF 80T LVF RVF LVF RVF
g /0 g /0 F
> >
O O
© ©
S 60 S 60
O O
< <
50 50
0 Choosing  Choosing 0 Choosing  Choosing
angry over neutral over angry over neutral over
neutral happy neutral happy

Im et al., in preparation



Conclusion
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e Different brain pathways

e Different hemispheric lateralization
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