Different mechanisms and pathways for perceiving objects, sets, and ensembles

Hee Yeon Im

A. A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Harvard Medical School

How do we see the world?

We do not see the world like this

Groups of objects

Spatial layout of the scene

Gist of the scene

Objects, Sets, and Ensembles

- One-to-one correspondence between objects
- Perceiving or remembering features of individual objects

- One-to-one correspondence between objects or sets
- Chunking
 F-B-I-C-I-A-N-S-A-C-A-T
 FBI-CIA-NSA-CAT
- Grouping

• Averaging

- Average hue (Maule & Franklin, 2015)
- Average size (Ariely, 2001)
- Numerosity estimation
 - Approximate number (Halberda et al., 2006)

Grouping and visual impression of number

EEEE	E F F F E	нннн
E E	FF	НН
E E EEEE	F F FFFF	н н нннн

How many dots do you see?

Number estimation of sets and objects

Exp.1: How do we see sets?

- Stimulus duration: 50, 99, 198, 330 msec
- 5-35 randomly located dots

lm, Zhong, & Halberda, 2016

Exp.2: How do we see objects?

Perceiving sets

Hierarchical grouping algorithm

Im, Zhong, & Halberda, 2016

Model-predicted grouping window size

Model prediction error = Model-predicted number of sets - human response

Mean of the best-fit grouping window size: 3.91°

Grouping can happen very quickly

Im, Zhong, & Halberda, 2016

Hierarchical coding of "set" and "object"

Less underestimation of dots

More underestimation of dots

Grouping modulates visual impression of number.

How many ensembles can we remember?

Predicted accuracy for an ideal observer

Accuracy = 100*p + 50*(1 – p) Two sets are Lucky guess in memory p = probability that the two remembered sets are tested from N sets displayed; 1/(N choose 2)

Capacity: 2.5 sets (on average)

Im & Chong, 2014

Grouping increased capacity limit of ensembles

Predicted accuracy for an ideal observer

Accuracy = 100*p + 50*(1 – p) Two sets are Lucky guess in memory p = probability that the two remembered sets are tested from N sets displayed; 1/(N choose 2)

Capacity: 2.5 sets → 3.5 sets

Im & Chong, 2014

Attentional selection of ensembles

Largest set attracted attention

Im, Park, & Chong, 2015

Can smallest set attract attention?

Im, Park, & Chong, 2015

Attention toward an ensemble, not an object

Probe at the centroid of larger set

Probe next to the largest individual

Im, Park, & Chong, 2015

Ensembles as units of selection and storage

Poorer segmentation of sets ~2.5 sets in memory

Better segmentation of sets
~3.5 sets in memory

- Grouping increased memory capacity for ensembles.
- Centroid of the largest set attracted attention.

How can ensembles be extracted so quickly?

Comparing ensembles

Comparing individuals

Making emotional crowds

51 morphed emotional faces

- Six identities (3 females, 3 males)
- Number of faces in a crowd: 4 or 6 (8 or 12 total)

Ready

Left or Right?

Crowd emotion vs. Individual emotion

Im et al., 2017

Parallel processing of crowd emotion

8 faces

12 faces

Emotional distance between crowds

Im et al., 2017

Gender of facial crowds

Male faces Female faces

Intermixed identities

Laterality effects: Crowd vs. Individual

Crowd emotion

Angry (LVF)

Choosing angrier crowd

Choosing relatively angrier crowd

Neutral (RVF) Angry (LVF)

Choosing angrier individual

Choosing relatively angrier individual

Im et al., 2017

Task-dependent laterality effects for crowds

Crowd emotion: Avoidance task

Angry (LVF) Neutral (RVF) Neutral (LVF) Happy (RVF)

Choosing angrier crowd

Choosing relatively angrier crowd

Control: Approach task

Neutral (LVF) Angry (RVF)

Choosing relatively happier crowd

Choosing happier crowd

Im et al., 2017

fMRI results: Crowd vs. Individual

Left Hemisphere

Right Hemisphere

Crowd t=5 t=2.5 t=5 Individual

Dorsal and ventral pathways

- Quick and dirty processing of global, low-spatial frequency
- Goal-dependent, rapid action execution

Region-of-Interest analysis

Im et al., 2017

M- and P-pathways for crowd and individual emotion

Im et al., 2017

Brain areas predicting accuracy for crowds and individuals

Magnocellular bias for crowd emotion perception

Magnocellular (M) biased

Parvocellular (P) biased

Im et al., in preparation

Goal-dependent laterality effects for M-biased stimuli

Parvocellular (P) biased

Conclusion

- Hierarchical representation of objects, sets, and ensembles
- Interaction between the different types of representation

- Different brain pathways
- Different hemispheric lateralization

Acknowledgement

Funding: NIH 5R01MH101194-02

Kestas Kveraga Reginald Adams Cody Cushing Noreen Ward Daniel Albohn Nouchine Hadjikhani Troy Steiner

