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Ensemble statistics as units of selection

Hee Yeon Im1,2, Woon Ju Park2, and Sang Chul Chong2,3

1Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore,
MD, USA
2Graduate Program in Cognitive Science, Yonsei University, Seoul, Korea
3Department of Psychology, Yonsei University, Seoul, Korea

The current study investigated whether attentional mechanisms operate on ensembles as higher-order
units for selection. In Experiment 1, we presented sets of circles and asked participants to compare the
mean sizes of the sets while concurrently detecting a small probe appearing at a centroid of one of the
sets. We found that, both with and even without the task instruction to favour larger mean sizes, people’s
mean size judgement was more accurate for the sets with larger mean sizes. In addition, detection of the
probe appearing in the set with the largest mean size was facilitated by a matching task instruction.
However, when the task instruction favoured smaller mean sizes, mean size judgement became more
accurate for the sets with smaller mean sizes. These results suggest that attentional selection can be based
on ensembles. In Experiment 2, we found further evidence that attention was directed towards the
centroid of an ensemble, rather than towards an individual member of the ensemble. Together, these
results suggest that attentional modulation can operate at the level of ensembles instead of selecting
individuals separately and that the centroid of an ensemble can be the locus of selection based on an
ensemble.

Keywords: Ensemble statistics; Mean size comparison; Probe detection; Selective attention; Task setting.

The human visual system has evolved to process
structured environments efficiently (Barlow, 1972).
As the visual world is highly structured and
predictable, one way to accomplish this efficiency
is to form general descriptions of groups of similar
items. In our everyday visual experience, we use
this ability to represent the global properties of a
set of similar objects as an ensemble. Imagine that
you are buying apples at the fruit market. To select
which apples you wish to buy, you may use many
different visual aspects of the groups of apples
quickly without scrutinising the individual apples
too much, for example, which container has the
most apples (at least approximately), or which

container has the largest apples on average. En‐
semble representation provides summary informa-
tion about groups of objects.

Previous studies have shown that people can
extract ensemble representations very rapidly and
efficiently. For example, human observers can
represent the mean size of a set of circles from a
very brief visual array lasting as little as 50 ms
(Chong & Treisman, 2003; but see also Whiting &
Oriet, 2011). Observers are also remarkably accur-
ate at extracting the mean size (Ariely, 2001;
Chong & Treisman, 2003), mean orientation
(Ariely, 2001; Dakin & Watt, 1997; Parkes, Lund,
Angelucci, Solomon, & Morgan, 2001), average
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location of objects (Alvarez & Oliva, 2008) and
the average emotion of faces in a crowd from
visual images (Haberman & Whitney, 2007). Fur-
thermore, previous studies have shown that the
precision of ensemble representations of multiple
objects was better than that for single individuals
(Sweeny, Haroz, & Whitney, 2013). It has been
suggested that the better precision of the repres-
entation of ensembles than of individual objects is
due to the fact that the internal noise that limits
the processing of ensemble representation is lower
than that for a single object (Im & Halberda,
2012). Presumably, the internal noise for an
ensemble is lower because of the averaging pro-
cess in which the noise of multiple individual
measurements cancels each other out (for review,
see Alvarez, 2011). Ensemble representation
has been found to be precisely extracted even
when visibility of the items was impaired (Choo &
Franconeri, 2010), and under conditions of re‐
duced attention in which observers were asked
to perform an additional task simultaneously
(Alvarez & Oliva, 2009; Joo, Shin, Chong, &
Blake, 2009). Ensemble representations are there-
fore robust and efficient codes that summarise the
global visual properties of a group of multiple
items.

Although many studies have demonstrated
human observers’ remarkable ability to extract en‐
semble representations, some empirical questions
remain to be addressed: how can ensemble repre-
sentations enhance visual cognition? And how do
ensemble representations interact with other cog-
nitive processes such as attention? Previous find-
ings have provided evidence that ensemble
representations may be treated as higher-order
units of visual processing (e.g. visual working
memory), in the same manner as individual objects.
For example, the visual system can extract and
maintain ensemble representations from up to
three or four sets of items at once (Halberda, Sires,
& Feigenson, 2006; Im & Chong, 2014), but no
more than that. This is similar to what has been
observed for individual objects, which suggests that
representations of ensembles and of individual
objects may both be similarly constrained by the
capacities of visual attention and working memory
(for review, see Feigenson, 2011).

If ensembles function as separate entities for
the attention and visual working memory in the
same way as individual objects, then it is hypothe-
sised that an ensemble of multiple objects will
interact with attentional mechanisms in the same
way as an individual object does. In the current

study, we investigated whether attentional mec‐
hanisms could be modulated at the level of
ensembles, just as they can be at the level of
individual objects. In the domain of individual
objects, previous studies have shown that an
object can be selected in a bottom-up manner
based on certain visual features, such as the onset
or offset of an item (Abrams & Christ, 2003;
Yantis & Jonides, 1984) or its featural singularity
(Theeuwes, 1992). These properties are prioritised
because they are likely to contain important
information about changes in the environment.
The size of an object is also one of the visual
domains that modulate stimulus-driven attention.
For example, a large object has been observed to
capture bottom-up attention (Proulx, 2010), and a
larger target among smaller distractors is detected
much more rapidly than in the opposite case
(search asymmetry; Treisman & Gormican,
1988). These results show that a larger object can
be prioritised during the selection process. It has
been speculated that larger objects capture the
attention because they are often ecologically more
important and advantageous than smaller ones
(e.g. Proulx, 2010).

Attentional selection can also be modulated
according to the current goal or the task set (Green
& Anderson, 1956). The object that is relevant to
the task goal attracts top-down attention, being
prioritised and selected for further processing by
the participant. For example, a target object that is
relevant to the current goal is prioritised over
other salient items in a visual array (e.g. Folk,
Remington, & Johnston, 1992; Folk & Remington,
1998; Most, Scholl, Clifford, & Simons, 2005).

We tested how these different attentional
mechanisms interacted with ensemble representa-
tions of multiple objects. Specifically, we predicted
that the ensemble with the largest mean size would
be prioritised over other ensembles, and that the
selection of ensembles would also be modulated
by the goal of the current task.

In Experiment 1, we measured how accurately
people could judge the mean size of multiple
ensembles, as well as the response time (RT) for
detecting a probe appearing at a centroid of one of
the ensembles. Four ensembles were sown in total,
and the members of a given ensemble were
spatially intermixed with members of other ensem-
bles, ensuring selection based on ensemble rather
than on individual elements. To measure the
accuracy in mean size judgement, participants
were asked to first extract the mean sizes of all
four ensembles and then compare only two of the
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sets at the end of each trial. Because attention
enhances the processing of an attended stimulus,
the attended stimulus is expected to be detected
and identified more precisely and more rapidly
than it would without direct attention (e.g. Sagi &
Julesz, 1987; Urbach & Spitzer, 1995). Since
object-based attention is drawn directly to the
location of the stimulus (Egly, Driver, & Rafal,
1994), in our study participants’ attention was
expected to be directed to the location of the
ensemble. Thus, if the ensemble with the larger
mean size attracted bottom-up attention, then the
accuracy of mean size judgement would be greater
for the ensemble with the larger mean size, and
the RT for probe detection would be faster at the
location of the ensemble with the larger mean size.

We defined the location of an ensemble as the
average location (i.e. centroid) of the elements
belonging to the ensemble. The centroid can serve
as the focus of ensemble-based attention; when it
is unnecessary or impossible to process all the
different locations of individual objects, the most
logical way to yield the best performance is to use
the average location. Previous studies have indeed
shown that participants are very accurate in
representing the centroid of multiple objects even
when they could not accurately state the location
of each element (Alvarez & Oliva, 2008). In
addition, when looking at a stimulus composed of
multiple random dot clusters, participants’ sac-
cades landed with high precision near the average
location of the dots (Melcher & Kowler, 1999).
Therefore, we expected to see attentional modu-
lation based on the centroids of the ensembles as
attentional foci.

We then tested whether a task goal also modu-
lated the deployment of attention towards ensem-
bles by simply changing the task instructions for
mean size judgement. Previous studies have shown
that task rules or instructions can modulate the
deployment of attention for single objects (e.g. Folk
et al., 1992; Ravizza & Carter, 2008). Based on the
task demands, observers were able to narrow their
selective attention by focusing on the information
relevant to the current task instructions, and to
prevent the cognitive system from processing any
information that did not serve the current goal
(Ravizza & Carter, 2008). With this in mind, we
switched our mean size judgement task instructions
from “which ensemble has a larger mean size” to
“which ensemble has a smaller mean size”.

When there are more objects than the visual
system can process at any given time, the atten-
tional mechanisms select only a few objects that

are more important than the others in the visual
image (two to four objects; Luck & Vogel, 1997;
Pylyshyn, 1989; Rensink, 2002; Scholl & Pylyshyn,
1999). We expected that, due to the large number
and complexity of items presented in our visual
stimuli, changing the task instructions in this
manner would bias the participants’ top-down
selection process towards prioritising the ensem-
bles demanded by the task (i.e. the sets with
smaller mean sizes).

In Experiment 2, we further tested whether
prioritisation of ensembles with the largest mean
sizes indeed operated on the ensembles them-
selves, rather than on individual members of the
ensembles (e.g. the largest member). When parti-
cipants were only performing the probe detection
task, the probe appeared either at the location of
the largest individual member of an ensemble, or
at the location of the centroid of the ensemble. We
hypothesised that if the mean size of an ensemble
attracted bottom-up attention towards the entire
ensemble rather than towards an individual mem-
ber of that ensemble, then participants’ probe
detection would be faster when the probe
appeared at the centroid of the ensemble than
when it appeared at the location of the largest
individual.

EXPERIMENT 1

Method

Participants. Eighty-eight undergraduate students
of Yonsei University participated in this study,
either for course credit or for monetary compensa-
tion. All the participants had normal or corrected-
to-normal vision and were unaware of the purpose
of the study. The experimental protocol was
approved by The Institutional Review Board of
Yonsei University, and signed informed consent
forms were obtained from all participants.

Apparatus and stimuli. The stimuli were created
using MATLAB with the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997) and presented on a
linearised Samsung 21 monitor with a frame
rate of 85 Hz. The participants were positioned
approximately 90 cm from the display, with their
heads positioned on a forehead-and-chin rest. At
this distance, one pixel on the display was sub-
tended at a visual angle of 0.016°.

The stimulus display contained 20 circles
grouped as four sets of five circles with different

116 IM, PARK, CHONG

D
ow

nl
oa

de
d 

by
 [

Y
on

se
i U

ni
ve

rs
ity

] 
at

 1
6:

26
 1

0 
D

ec
em

be
r 

20
14

 



sizes of circle in each set (Figure 1). Sets in each
trial were distinguished by being randomly
assigned one of five colours (red, blue, yellow,
green and cyan). The luminance for the five
colours was 20.34 cd/m2 for red, 10.53 cd/m2 for
blue, 92.87 cd/m2 for yellow, 73.25 cd/m2 for green
and 83.06 cd/m2 for cyan. The luminance of the
grey background was 56.01 cd/m2. For each trial,
the mean size of the smallest set was chosen
randomly from a uniform distribution ranging
from 1.06° to 1.17°. The other three mean sizes
were then determined in multiplicative steps of a
14% size difference. Multiplicative steps were
used because the perceived size of circles follows
a power function with an exponent of 0.76
(Teghtsoonian, 1965), and computation of the
mean size also follows this function (Chong &
Treisman, 2003). This 14% difference in propor-
tion between the mean sizes of the sets yielded a
range of 1.06–1.97° for mean size across the four
sets. Once the mean sizes of the sets were
determined, the sizes of the individual circles in
each set were randomly generated within a range
of 1.01–2.11° so that their combined average
accorded with the given mean size of their set.
The variance of elements within a set did not
differ systematically across sets, and it ranged from
0.16° to 0.17°.

The array of possible circle locations was speci-
fied by an invisible 6 × 6 grid (each cell subtending
3° × 3°). The location of each circle was randomly
determined, with the constraint that any two
centroids for the four sets should not fall closer to
one another than 4.8°. Each circle was presented
with a slight spatial jitter within a uniformly
distributed range of 0.64° from the centre of the
cell. The test indicators, which signified the pairs of
sets to be compared at the end of each trial, were
0.48° × 0.96° filled rectangles. Each indicator had a
different colour chosen from one of the sets in the
original display. Two indicators were presented
11.84° apart on either side of the screen’s centre.
In one-third of the trials, a probe for the detection
task was presented. The probe was a small black
square subtending at 0.12° × 0.12°. It appeared at
the centroid of one of the sets presented in the
visual array. The centroid location for each set
was defined as the average location of the five
circles belonging to the set, as in Alvarez and
Oliva (2008).

Design. The current study had a 3 × 3 × 4 design,
with three different task settings (larger, smaller
and mixed), three pairs of mean sizes to be
compared, and four probe locations (centroids)
for the probe detection task. The task settings
varied between participants and were blocked
across the participants. The other variables were
varied between tasks conducted by one particip-
ant. In the “larger” condition (n = 30), participants
were instructed to judge which of the two indi-
cated colour sets had the larger mean size; in the
“smaller” condition (n = 29), they were asked to
judge which had the smaller mean size. In the
“mixed” condition (n = 29), in each trial a post-cue
indicated whether they should judge the larger or
smaller mean size. It was emphasised to the
participants that they should respond based on
the mean sizes of the sets of circles rather than on
the individual sizes of circles. The two sets to be
compared were always adjacent to one another in
terms of their mean sizes, yielding three possible
pairs of to-be-compared sets in total (Figure 1).
The probe appeared with equal frequency at each
of the four centroids, regardless of the sets to be
compared. Each participant completed 192 trials,
as well as one practice block of 12 trials. The order
of the trials within each block was randomly
selected. In the mixed condition, the total number
of trials was doubled because the participants
randomly reported both the larger and smaller
mean size. It took participants 20 minutes to

Figure 1. Example of a visual array and illustration of possible
pairs of sets for the mean size judgement task in that array. The
pair of sets for the mean size judgement task always included
two sets adjacent in their mean sizes.
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complete the larger and smaller conditions and 40
minutes to complete the mixed condition.

We controlled for the possibility that partici-
pants would simply pay attention to the largest
individual member of a set rather than to the set
with the largest mean size when comparing the
two indicated sets. Comparing individual elements
is a reasonable and natural strategy given that a
larger member draws more bottom-up attention
than other, smaller elements (Proulx, 2010; Treis-
man & Gormican, 1988), and because simply
selecting the set containing the largest member in
the array will be more likely to yield a correct
response. To minimise the possibility that the
participants would use this sampling strategy,
we generated two different types of trial. In half
of the trials, of the sets to be compared the set
with the larger mean size contained the largest
circle (“same” trials), whereas in the other half of
the trials, the set with the smaller mean size
contained the largest circle (“different” trials).
This constraint ensured that the participants could
not have recourse to simply comparing the largest
circle in each set and judging the mean according
to these extreme values; if they responded based
on the individual size of the largest circle in each
set, their accuracy in the mean size judgement task
would only be 50%. During each trial, therefore,
the sizes of the individual circles were generated
until they met the given mean sizes and satisfied
the constraint for either a “same” or “different”
trial.

Procedure. The procedure followed is shown in
Figure 2. Each trial began with the presentation of
a fixation cross for 500 ms. The stimulus display
was then presented for 1000 ms, at which point the
participants were instructed to compute the mean
sizes of the four sets, which were distinguished by

colour. A grey screen with a fixation cross then
appeared for 2000 ms. For one-third of the trials, a
probe for the detection task was presented for
120 ms during this delay. The probe appeared
briefly after the offset of the stimulus display,
either after 30 or 60 ms in the “larger” condition,
and either after 30, 60 or 90 ms in the “smaller”
and “mixed” conditions. We varied the stimulus-
onset asynchrony (SOA) between the offset of the
stimulus display and the onset of the probe in
order to ensure that our participants would not be
able to predict the time at which the probe would
appear. In response to the probe, the participants
had to press the “z” key with their left hand as
quickly as possible. If the participants missed the
probe, or if they responded when no probe
appeared, they heard an error sound. After the
response, or after a duration of 2000 ms in the
absence of a response, a grey screen with two
colour indicators appeared. When there was no
probe, the indicators were presented 2000 ms after
the offset of the stimulus display. The participants
were then asked to judge which of the two sets
having the same colours as the indicators had
either the larger or the smaller mean size, depend-
ing on the top-down task settings. In the mixed
condition, an alphabet letter (“L” for larger, “S”
for smaller) in the centre of the test display
indicated whether they had to choose the set
with the larger or the smaller mean size. Note
that in every condition, the participants did not
know which sets to compare until the indicators
appeared. The colour indicators remained until
the participants had responded by pressing the
number “1” key if they thought the left indicator
represented the set with the larger or smaller
mean size (depending on the task settings), or by
pressing the number “2” key if they thought the
indicator on the right represented the required set.

Figure 2. Timeline of trials in Experiment 1.
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Auditory feedback was given on both the probe
detection task and the mean size judgement task.

Results

Since the different SOAs between the offset of the
stimulus and the onset of the probe display did not
yield differences in any aspect of the data (all the
ps were insignificant), we collapsed the data from
the different SOAs when analysing accuracy
and RT.

We examined whether trial type (same: the
largest individual circle belonged to the larger set;
different: the largest individual circle belonged to
the smaller set) systematically affected performance
when interacting with the other main factors. We
conducted 2�3 mixed design and 2�4 repeated
measures of analysis of variance (ANOVA) on the
accuracies for the mean size judgement task and on
the RT for the probe detection task to examine the
interaction between the trial type and the other
main factors: the task settings (three levels: larger,
smaller, or mixed), the pair of mean sizes to be
compared (three levels), or the probe location (four
levels). Although the significant main effect of trial
type (same vs. different) was on the accuracy for
the mean size judgement task (same trials; 61% vs.
different trials 58.7%; F(1,85), p < .01), we found
that the interaction between trial type and task
setting was not significant (F(2, 85) = 1.108, p =
.335). The interaction between trial type and the
pair of mean sizes to be compared was also not
significant (F(2, 170) = 0.495, p = .610). Moreover,
we found that the main effect of trial type on RT
was not significant (F(1,85) = 3.095, p = .084); nor
were the interaction between trial type and the
task settings (F(2, 85) = 0.685, p = .507) and the
interaction between trial type and the probe’s
location (F(3, 255) = 1.449, p = .229) significant.
Since trial type did not show any significant
interaction with the other main factors under
investigation (i.e. task settings, the pair of mean
sizes to be compared and probe location), we
collapsed the trial types (same and different) in
further analyses. In the following analyses, Huynh–
Feldt corrected p values were reported when the
result of Mauchly’s sphericity test was significant
and Bonferroni correction was used for multiple
comparisons.

We first looked at the overall accuracies for the
mean size judgement task and the probe detection
task in each of the three conditions (larger, smaller
and mixed). All conditions produced an average

accuracy that was better than chance. The overall
accuracy of the mean size judgement task was
59.8%, which was significantly higher than that of
chance (t(87) = 15.217, p < .01). The overall
average accuracy of the probe detection task
was 94%.

To determine whether participants were better
at distinguishing the set with the larger mean size
than the one with the smaller mean size in the
different task settings, we compared the accuracies
of the mean size judgement task according to the
pairs of mean sizes and task settings (Figures 3A

Figure 3. Results of Experiment 1: (A) Mean accuracy of
mean size judgement for each pair of sets in the different task
settings. The dotted horizontal line indicates the chance level
(50%). (B) RT for detecting the probe appearing at the
centroid of each set in the different task settings. The error
bars indicate the standard error of the mean.

ENSEMBLE STATISTICS AND ATTENTION 119

D
ow

nl
oa

de
d 

by
 [

Y
on

se
i U

ni
ve

rs
ity

] 
at

 1
6:

26
 1

0 
D

ec
em

be
r 

20
14

 



and 3B). A 3 × 3 mixed ANOVA was performed,
with the pair of mean sizes to be compared
(largest vs. second largest, second and third
largest, and third largest and smallest pair) as the
within-subjects variable and the three task settings
(larger, smaller and mixed) as the between-sub-
jects variable. The main effect of the task set-
ting was not significant (F(2, 85) = 2.991, p = .056,
η2 = 0.07), but accuracy in the larger and mixed
conditions was generally higher than that in the
smaller condition. The main effect of the mean
size pairs was significant (F(2, 170) = 5.357, p <
.01, η2 = 0.07). Specifically, the accuracy of the
mean size judgement tasks was higher when the
pair of sets with the two largest mean sizes were
compared than it was for when other pairs were
compared (all ps < .05). Importantly, the interac-
tion between the task setting and the pairs
compared was also significant (F(4, 170) =
12.706, p < .01, η2 = 0.23).

To understand the nature of this interaction, we
separately analysed the effect of each task setting
on the accuracy of mean size judgement for three
pairs of mean sizes. In the larger and mixed
conditions, mean size comparison of the two sets
with the largest mean sizes was the most accurate
(larger condition: F(2, 58) = 12.342, p < .01,
η2 = 0.30; mixed condition: F(2, 56) = 9.179, p <
.01, η2 = 0.25). In other words, the mean size of the
sets with the largest mean sizes was more accur-
ately represented both in and outside the setting
which encouraged participants to focus attention
on these sets. However, in the smaller condition,
the accuracy was higher for the pair of sets with
the two smallest means than for the pair of sets
with the two largest means (F(2, 56) = 8.421, p <
.01, η2 = 0.23), suggesting that the top-down task
setting reversed the pattern of the results. It is
important to note that better accuracy for larger
mean sizes was also found in the mixed condition.
Because the participants were not informed which
task to perform until they had seen the ensembles,
in this condition selecting only the larger sets was
not the optimal strategy. In the mixed condition,
participants did not simply choose one of the
strategies that might have been used in the larger
or smaller conditions. Most of the participants in
the mixed group had a higher accuracy for larger
sets, and the rest did not clearly perform better for
smaller sets. Importantly, if an inherent bias
towards larger mean sizes did not exist (so that
the participants in the mixed group randomly chose
a strategy favouring either “larger” or “smaller”
sets), then we would expect the accuracies to be

similar for all pairs in the mixed group. Thus,
while the task instruction was a powerful source of
attentional modulation, the fact that larger mean
sizes were more accurately represented in the
mixed condition suggests possible asymmetry in
the representation of mean size which informs
stimulus-driven modulations.

We next analysed the participants’ RTs in the
detection task in relation to the location of
the probe and the task setting (Figure 3B). We
selected only the trials featuring correct probe
detection for further analysis of the RT. For each
participant, we removed the outliers that were
more than three standard deviations from the
mean of all RTs for that participant. As a result,
an average of 0.8% of the trials was excluded. A
4 × 3 mixed ANOVA analysis was performed,
with a within-subjects variable of the probe loca-
tions (the centroid of the largest, second largest,
third largest and smallest set) and a between-
subjects variable of the task setting. The main
effects of probe location and of the task setting
were both significant (probe location: F(3, 255) =
2.675, p < .05, η2 = 0.15; task setting: F(2, 85) =
17.750, p < .01, η2 = 0.26). Specifically, probe
detection was faster at the centroids of the two sets
with the largest mean sizes than at the centroids of
the two sets with the smallest mean sizes (all ps <
.05). Moreover, probe detection was faster in the
larger and mixed conditions than in the smaller
condition (all ps < .01). It is important to note that
in the mixed condition, the task setting changed
between almost every trial, yet participants’ RT in
the mixed condition was significantly faster than in
the smaller condition. Thus, participants in the
mixed condition seemed to perform the task in a
similar manner to the larger condition, presumably
by prioritising the sets with the largest mean sizes,
as if prioritisation of a larger mean size is a
“default mode”. On the other hand, probe detec-
tion in the smaller condition was much slower,
suggesting that the selection of a set with a smaller
mean size is not as intuitive as selecting a set with
a larger mean size.

We also found a significant interaction between
probe location and task setting (F(6, 255) = 2.846,
p < .05, η2 = 0.09), which gave us a better
understanding of the effect of probe location on
each of the task settings. In the larger condition,
the RTs became significantly faster when the
probe was presented in the centroid of the set
with larger mean size (F(3, 87) = 24.32, p < .01,
η2 = 0.46). In other words, attention was allocated
to the centroid of the set with the largest mean
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size, facilitating detection of the probe in this
location. In the smaller and mixed conditions,
however, we did not find a significant difference
in RT for different probe locations (smaller:
F(3, 84) = 1.712, p < .171; mixed: F(3, 84) =
0.040, p = .989). In other words, whereas partici-
pants generally responded to the probe faster in
both the larger and mixed conditions, probe
detection was only significantly facilitated by the
probe appearing at the centroid of the largest set
in the larger condition. One possible reason for
this is that our probe detection task was secondary
rather than primary, making the possible atten-
tional modulation less effective. We also speculate
that the nature of this difference in RT is rather
additive and facilitatory, occurring only when the
task instruction matches the bias inherent in
the stimulus. In the smaller and mixed conditions,
the interplay of different sources of attentional
modulation may have weakened the stimulus-
driven bias.

We found that participants were more accurate
at comparing the groups with the two largest mean
sizes than those with the smaller mean sizes. This
result suggests that they prioritised the group with
the largest mean size for further processing. The
prioritisation of the largest group is not likely to
have been due to perceptual discriminability, as
we used Teghtsoonian’s psychological scale to
generate the mean sizes in order to equate the
perceptual discriminability across the groups.

Although the Teghtsoonian scale, in principle,
allowed us to use mean sizes with the same level of
perceptual discriminability, we ran a control
experiment in which we presented 15 new partici-
pants with visual arrays that contained only two
groups of objects. The mean sizes of the two
groups were randomly chosen from the four
mean sizes used in Experiment 1, and the other
aspects of the experimental procedure were ident-
ical to those in Experiment 1. We compared the
accuracy of mean size comparison for each pair of
mean sizes (i.e. comparing the first largest and
second largest, the second and third largest, and
the third and fourth largest). As shown in Figure 4,
we did not observe any systematic difference in
the accuracy of mean size comparison with the
pair compared (F(2,36) = 0.29, p = .75). This result
suggests that when the visual system did not need
to select subsets from a visual array (i.e. when
there were only two sets to be processed), percep-
tual discriminability did not differ between sets.
Therefore, our main finding that the pair of sets
with the two largest mean sizes yielded better

accuracy in mean size judgement reflects the
prioritisation of larger sets by the attentional
mechanism, rather than differences in the percep-
tual discriminability of the compared sets.

It might appear that attention is allocated to the
largest member of an array rather than to the set
with the largest mean size because a larger
item always attracts more attention (Treisman &
Gormican, 1988). However, this does not explain
our results as the probe was always presented at
the centroid of the set, not in any one of the
elements’ locations. Moreover, we ensured in our
experimental design that the set with the largest
mean size would not always contain the largest
circle so that the centroid of the largest set and the
location of the largest circle varied independently.
Our data suggest that the set with the largest mean
size was still prioritised even when the largest
individual item belonged to a different set. When
we separately analysed the data from the trials in
which the largest circle did not belong to the set
with the largest mean size, we found essentially
the same result. There was a significant interaction
between the task setting and the pairs compared in
the mean size judgement performance (F(4, 170) =
5.692, p < .01). Specifically, participants were more
accurate in comparing the sets with the largest
mean sizes in the larger (F(2, 58) = 4.827, p < .05)
and the mixed (F(2, 56) = 5.566, p < .01) condi-
tions. However, the pattern was reversed in the
smaller condition (F(2,56) = 3.81, p < .05), where
participants were more accurate in comparing sets
with the smallest mean sizes. In addition, partici-
pants more rapidly detected a probe presented at
the centroid of the largest set (F(3, 87) = 3.510,

Figure 4. Results of the control experiment. The error bars
indicate the standard error of the mean.
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p < .05), and generally detected the probe faster in
the larger and mixed task settings than in the
smaller task setting (F(2, 85) = 18.031, p < .01).
These results suggest that the attentional modula-
tion observed in this study is more likely to have
operated on ensembles, rather than on the largest
individual member in the visual array. Previous
studies have raised the concern that ensemble
processing could have been replaced by an
object-based sampling mechanism in which one
or two elements in each set are selected and serve
as representatives of their set (e.g. Myczek &
Simons, 2008). Thus, we ran Experiment 2 to
further examine attentional allocation in
ensembles.

EXPERIMENT 2

In Experiment 2, we empirically tested whether
attention was allocated to an ensemble as a unit,
instead of to any individual member of an
ensemble. Following the results of Experiment 1,
we hypothesised that when ensembles need to be
parsed and extracted, attention would be allocated
towards the centroid of each ensemble. To test this
hypothesis, we presented two sets of circles in a
visual array and asked participants to detect and
discriminate a probe (either a letter “T” or “L”).
Presenting two sets of circles in a visual array
provided many more individual items for selection
and processing at any given time, encouraging
participants to extract summary representations
instead of processing individual items separately.
Additionally, we used different mean sizes and
different colours for each ensemble of circles in
order to facilitate the parsing and segmenting of
ensembles. In order to examine whether attention
was allocated to the centroid of an ensemble

instead of to individual items when there are
multiple sets of objects to be represented, we
directly compared the accuracy of probe discrim-
ination when the probe appeared at the centroid
of an ensemble with accuracy when it appeared at
the location of the largest single element of the set.

Methods

Participants. Forty undergraduate students from
Yonsei University participated in this study, either
for course credit or for monetary compensa-
tion. None of these students had participated in
Experiment 1.

Apparatus and stimuli. The apparatus and stimuli
were identical to those in Experiment 1, except for
the following changes. To facilitate the parsing of
the two sets, in Experiment 2 we only used the sets
from Experiment 1 with the largest and the smallest
mean size, and we also used a different colour for
each set. Examples of displays are shown in Figure
5. For a probe, we used one of the letters “T” and
“L”, instead of the black square of Experiment 1.
The letter probe stimuli had a visual angle of 0.72° ×
0.72°. The probe location was determined to be
either at the centroid of the set or at the location of
the largest individual member of one set. In order
to minimise the perceptual differences between the
probe locations, the locations of the circles were
generated in a pseudorandom manner, with the
constraint that the eccentricity of the probe should
be identical at the centroid of an ensemble and at
the location of the largest individual element.

Procedure. All aspects of procedure for Experi-
ment 2 were identical to those of Experiment 1,
other than those specified here. The probe was

Figure 5. Sample displays for Experiment 2. A probe appeared either at the centroid of an ensemble of circles (left column) or
adjacent to the largest individual circle within an ensemble (right column).

122 IM, PARK, CHONG

D
ow

nl
oa

de
d 

by
 [

Y
on

se
i U

ni
ve

rs
ity

] 
at

 1
6:

26
 1

0 
D

ec
em

be
r 

20
14

 



presented in every trial either at the centroid of an
ensemble of circles or adjacent to the largest
individual circle in a set. The task was to report
whether the target probe was “T” or “L”. Note
that there was no mean size judgement task; thus,
the circles of the visual array were not at all
relevant to the task.

Results

Figure 6 summarises the results of Experiment 2.
We found that even when an ensemble of multiple
circles in the visual array was not relevant to the
task, the participants’ performance in identifying
the probe target was significantly more accurate
(F(1, 39) = 7.93, p < .01, η2 = 0.17) and faster
(F(1, 39) = 7.41, p < .05, η2 = 0.16) when the probe
was presented at the centroid of the set. Our
finding of better performance in probe discrimina-
tion when the probe appeared at the centroid of
the ensemble compared to when it appeared at the
location of the largest circle in the ensemble was
not due to perceptual difference such as the
probe’s eccentricity, as we ensured that the
eccentricity of the probe location was identical
across the conditions. Therefore, the result of
Experiment 2 further supports our claim that the
centroid of an ensemble can function as the locus
of selective attention operating on ensembles.

DISCUSSION

Ensemble statistics can be used to form an econom-
ical representation of a complex scene (e.g. Alvarez,
2011; Ariely, 2001; Chong & Treisman, 2003).
Attention also plays a role in the efficient processing
of a visual scene by selecting the most important

information and prioritising it in order to maximise
the outcome. The importance of information can be
determined either by the bottom-up signal strength
(i.e. attentional capture by onset or singularity; Folk
et al., 1992; Yantis & Jonides, 1984) or by top-down
relevance to the task goal (Green & Anderson,
1956). Here, we investigated how attentional selec-
tion mechanisms operate on ensemble representa-
tions. Our findings show that ensembles can be
selected by attentional mechanisms in a similar
manner to individual objects; the set with the largest
mean size is selected preferentially, but this prefer-
ence can be weakened or reversed by the top-down
attentional mechanism. Our findings also reveal an
intriguing aspect of ensemble-based attention: the
centroid (i.e. average location) of an ensemble may
serve as the focus of selective attention operating on
the ensemble.

The set with the largest mean size attracted
selective attention in the same way as a lar-
gest individual object (Proulx, 2010). Bottom-up
attention can therefore operate not only on the
individual size of an object but also on the mean
size of a group of multiple objects, and in the same
manner. This finding is consistent with previous
studies on visual search, which have shown that
searching for a large target among small distrac-
tors is easier and faster than vice versa (i.e. there is
search asymmetry for a larger target; Treisman &
Gormican, 1988). Our finding, however, is distinct
from previous findings on visual search for one
critical reason: our ensembles were different from
large individual object (Treisman & Gormican,
1988) because the largest object did not necessar-
ily belong to the largest ensemble, and the locus of
attention was the centroid of an ensemble where
no physical stimulus was actually presented.

Figure 6. Results of probe discrimination from Experiment 2: (A) Mean accuracy of probe discrimination when the probe
appeared at the centroid of an ensemble and at the location of the largest individual circle in an ensemble. (B) Mean RT for the
probe discrimination task when the probe appeared at the centroid of the ensemble and at the location of the largest individual circle
in an ensemble.
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Why is attention attracted to a large object or a
larger mean-sized group of objects? Although the
underlying mechanism is unknown, a previous
study demonstrated that this perceptive prefer-
ence for larger objects is observed from early
infancy (Newman, Atkinson, & Braddick, 2001).
From a developmental perspective, it has been
speculated that visual aspects of magnitude such as
size, height or quantity may be internally repre-
sented as falling on a mental scale with “taller,
larger or more” at the positive end and “shorter,
smaller or less” at the negative end, and that
children prefer and master the “positive” terms
(i.e. taller, larger or more) earlier than the “neg-
ative” terms (i.e. shorter, smaller or less; Barner &
Snedeker, 2008; Donaldson & Balfour, 1968;
Klatzky, Clark, & Macken, 1973). “Positive” terms
are used to denote “the excess … within a
dimension, with respect to some ‘standard’”
(Vendler, 1968, p. 95). On the other hand, “neg-
ative” terms are used to denote a defect or
deficiency with respect to a standard. This con-
ceptual preference for positive attributes such as
“larger” may also mediate the perceptual prefer-
ence for larger objects and ensembles than smaller
ones, as observed in this study.

Researchers have suggested that visual atten-
tion can be guided by various properties in the
environment. For instance, scene information can
direct our attention to the objects to be encoded
(Hollingworth & Henderson, 2003). Also, re‐
peated object locations and shapes form a context
that can guide our attention to find a target (Chun
& Jiang, 1998, 1999). The extraction of this scene
information can be used to facilitate the percep-
tion of both subsequent scenes and objects within
the scene (Sanocki & Epstein, 1997). Here, we
have shown that ensemble representation, such as
mean size of a set of items, can modulate the
deployment of attention. This attentional guidance
towards to sets with larger mean size may con-
tribute to the visual search for objects in complex
scenes via a non-selective pathway through which
the basic statistical information of an ensemble,
rather than of individual items, is extracted
(Wolfe, Võ, Evans, & Greene, 2011).

Our results show that the task set can also
modulate the attentional selection mechanisms
operating on the mean sizes of ensembles. Differ-
ent task instructions affected the manner in which
participants’ attention was deployed. This find-
ing is consistent with those of previous studies on
top-down attentional sets (Most et al., 2005; Kiss
& Eimer, 2011). It is worth noting that unlike most

previous studies on top-down attentional sets
(Most et al., 2005; Kiss & Eimer, 2011), we
changed the task demand within the single feature
domain of mean size, rather than across different
feature domains. Although most previous studies
have asked participants to shift their attention
across different feature sets, a task shift may also
include a change of attentional deployment within
a feature set, if the goal achievement depends on
different aspects of the stimuli (Ravizza & Carter,
2008). The definition of “attentional set”, however,
remains to be clarified by further studies.

Most theories of attentional guidance, such as
Guided Search (Wolfe, 1994) and Contingent
Capture (Folk et al., 1992), rely on the notion
that observers can be actively prepared to identify
a target by selectively enhancing relevant features
defining the target (i.e. feature-based attention).
We therefore concluded that our manipulation of
the task demand could encourage participants to
pay more top-down attention to one of the two
feature values in the domain of the mean size, in
the same way as feature-based attention can be
made to shift between red and blue stimuli in the
domain of colour.

We also found intriguing evidence that the
centroid of a set of multiple items can be the focus
of guided attention for the ensemble statistics of
the set. The centroid is an ensemble statistic that
represents the average location of a set. That
attention is guided towards the centroid of a set
itself interesting given that there is possibly no
physical stimulus at this location, even though it
describes the average location of a set of items as a
whole. Centroid information remains available to
observers even when they cannot effectively loca-
lise individual members of the set (Alvarez &
Oliva, 2008). Observers also position their eyes on
the centroid of multiple items when they atten-
tively track multiple items (Fehd & Seiffert, 2008).
The centroid of a set, therefore, may serve as the
locus of ensemble-based representation for selec-
tion, just as the location of an individual item can
be the target of selective attention for further
processing. To our knowledge, this is the first
empirical evidence that the centroid can serve as
the focus of ensemble-based attention.

Finally, the results of Experiment 2 suggest that
the centroid of an ensemble attracted attention
even when participants did not need to extract any
kind of ensemble representation. In Experiment 2,
the task was to report whether the target probe
was the letter “T” or “L”, and the circles were not
at all relevant to the task. Although the ensembles

124 IM, PARK, CHONG

D
ow

nl
oa

de
d 

by
 [

Y
on

se
i U

ni
ve

rs
ity

] 
at

 1
6:

26
 1

0 
D

ec
em

be
r 

20
14

 



of circles were not relevant to the task, we found
that attention was allocated towards the centroid
of an ensemble, rather than towards an individual
member of the ensemble. When there were many
items to be grouped into ensembles, it seems that
the selection mechanism operated at ensembles
level by allocating attention to the centroid of a set
of multiple items. Therefore, the results of Experi-
ment 2 not only verify that the centroid of a set
of multiple items can serve as the focus of
ensemble-based attention, but they also suggest
that the centroids of ensembles can be extracted in
a compulsive, obligatory manner to direct the
deployment of attention, as are other ensemble
feature of visual textures (Allik, Toom, Raidvee,
Averin, & Kreegipuu, 2014; Oriet & Brand, 2013).

Together, our results suggest that the mean size
of a set of multiple items can be used as a higher-
order unit for attentional selection. Our results
support the framework of a hierarchical visual
representation in which different levels of repre-
sentations can be extracted from objects and groups
of objects in a flexible manner. The visual system
can extract ensemble representations from a visual
array and can then select some of the ensembles for
further processing via attentional mechanisms, just
as it does with individual objects.

In real-life situations, attentional selection based
on ensembles instead of on individual objects may
be sufficient for the purposes of understanding and
interacting with complex visual scenes. When many
similar items are present in a visual scene, it is
highly inefficient to index and select each individual
object separately. Instead, one may attend to those
items through a single reference to the entire group.
Representing an ensemble as a single unit of similar
items increases the efficiency of the selection
mechanism by providing more information in a
compressed form about a larger number of objects
than the visual system can process individually. The
selected ensembles can then be manipulated and
further stored together in the same way as indi-
vidual objects (Im & Chong, 2014). Selection based
on ensembles thus enhances visual processing
(Alvarez, 2011; Brady & Tenenbaum, 2010, 2013)
by increasing the diversity and flexibility of the
visual system, and allowing more efficient use of its
limited capacity to process items simultaneously.
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