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Abstract
Reading the prevailing emotion of groups of people (“crowd emotion”) is critical to understanding their overall intention and
disposition. It alerts us to potential dangers, such as angry mobs or panicked crowds, giving us time to escape. A critical aspect of
processing crowd emotion is that it must occur rapidly, because delays often are costly. Although knowing the timing of neural
events is crucial for understanding how the brain guides behaviors using coherent signals from a glimpse of multiple faces, this
information is currently lacking in the literature on face ensemble coding. Therefore, we used magnetoencephalography to
examine the neurodynamics in the dorsal and ventral visual streams and the periamygdaloid cortex to compare perception of
groups of faces versus individual faces. Forty-six participants compared two groups of four faces or two individual faces with
varying emotional expressions and chose which group or individual they would avoid. We found that the dorsal stream was
activated as early as 68 msec after the onset of stimuli containing groups of faces. In contrast, the ventral stream was activated
later and predominantly for individual face stimuli. The latencies of the dorsal stream activation peaks correlated with partici-
pants’ response times for facial crowds. We also found enhanced connectivity earlier between the periamygdaloid cortex and the
dorsal stream regions for crowd emotion perception. Our findings suggest that ensemble coding of facial crowds proceeds rapidly
and in parallel by engaging the dorsal stream tomediate adaptive social behaviors, via a distinct route from single face perception.
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Introduction

We routinely encounter groups of people at work, school,
social gatherings, and now on group communication plat-
forms on the Internet. Reading the overall mood of the group
from facial expressions is important for guiding our attitude
and responses toward them. For example, reading the inten-
tion of violence from the facial expressions of a crowd on the

street allows us to sense potential danger and escape the situ-
ation. Reading the mood and receptiveness of an audience
during presentations allows us to tailor our own behavior,
perhaps by explaining something in more detail in a lecture
or adopting an affective state suitable to the group mood. Such
assessment of crowd emotion must be rapid and flexible to
support dynamic interactions (Elias, Dyer, & Sweeny, 2017;
Haberman & Whitney, 2007), because there is rarely enough
time to serially analyze each person’s facial expression in
many social situations. One way to achieve this level of speed
and efficiency is to represent the groups of faces as a higher-
level description in the form of ensemble statistics. Ensemble
statistics can be extracted from different feature dimensions as
an abstract and global description of groups of multiple items,
such as average (Alvarez & Oliva, 2008; Ariely, 2001; Chong
& Treisman, 2003; Dakin & Watt, 1997; Im, Park, & Chong,
2015; Im, Tiurina, & Utochkin, 2020; Maule & Franklin,
2015), approximate numerosity (Burr & Ross, 2008; Chong
& Evans, 2011; Gallistel & Gelman, 2000; Halberda, Sires, &
Feigenson, 2016; Im, Zhong, & Halberda, 2016; Utochkin &
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Vostrikov, 2017), or variance (Im&Halberda, 2013; Morgan,
Chubb, & Solomon, 2008; Norman, Heywood, & Kentridge,
2015; Solomon, 2010). It has been shown that human ob-
servers are capable of perceiving ensembles from complex,
real-world objects that engage in high-level processing, for
example, average emotion or identity from a crowd of faces
(Haberman & Whitney, 2009; Im et al., 2017; Ji & Pourtois,
2018; Leib et al., 2014), group behavior from biological mo-
tion of humans (Sweeny, Haroz, & Whitney, 2012), or a
crowd’s attentional focus from people’s average eye gaze di-
rection (Sweeny &Whitney, 2014). Ensemble coding appears
to be an efficient and powerful algorithm that the human brain
can rely on to facilitate people perception and social cognition
in general.

Although the efficiency of ensemble processing has been
well documented (Alvarez & Oliva, 2009; Chong &
Treisman, 2003; Haberman, Harp, & Whitney, 2009; Im
et al., 2016), and recently incorporated into several cognitive
models (Cohen, Dennett, & Kanwisher, 2016; McClelland &
Bayne, 2016; Rensink, 2000; Wolfe, Võ, Evans, & Greene,
2011), the neural mechanisms supporting this feat have only
begun to be explored. In the domain of face processing, a be-
havioral study in prosopagnosia patients reported an intact abil-
ity to extract the average identity of a crowd of faces despite the
prosopagnosics’ impairments in single face recognition (Leib,
Puri, Fischer, Bentin, Whitney, & Robertson, 2012); this sug-
gested a possibility of distinct neural mechanisms underlying
perception of crowd and individual faces. To identify neural
substrates mediating ensemble coding of emotional faces, we
recently conducted an fMRI study in healthy participants and
found that different subsets of brain areas were preferentially
activated during the processing of crowds of emotional faces
and individual faces (Im et al., 2017). In this study, we present-
ed either two crowds of people’s faces or two single faces to
participants and asked them to make snap judgments about
which of the two crowds or individuals theywould rather avoid.
The participants’ behavioral responses were equally precise and
fast when they were presented with only two single faces versus
crowds of many faces (up to 12 total), suggesting that ensemble
coding of facial crowds (i.e., crowd emotion) was quite efficient
and possibly benefited from parallel processing. We also found
that the dorsal visual stream regions, including the posterior
parietal cortex, showed greater activation for crowd emotion
processing, whereas the ventral visual stream regions, including
the posterior fusiform cortex, showed greater activation for in-
dividual emotion processing, suggesting differential contribu-
tions of the dorsal and ventral visual streams to the processing
of crowd emotion and individual emotion.

Characterizing the specific contributions of dorsal and ven-
tral pathways to the perception of crowd emotion and emotion
of a single face is challenging. Given the dense structural and
functional connectivity between the parietal and temporal cor-
tex, it is difficult to attribute processing to one or the other

pathway independent of the other, particularly in fMRI with
its slow BOLD signal. Because dorsal and ventral visual re-
gions are heavily interconnected (Borra et al., 2008;
Budisavljevic, Dell'Acqua, & Castiell, 2018; Catani, Jones,
& Ffytche, 2005; Zhong & Rockland, 2003), it is also impor-
tant to establish whether crowd emotion is projected to the
dorsal stream initially, or is the result of earlier processing of
the ventrotemporal visual areas, such as the fusiform face area
(FFA) whose output is then projected to the dorsal regions.
This can be done with MEG by examining the latencies of
activation in these pathways to each condition, as well as
using spectral measures of regional and interregional commu-
nication, such as phase-locking analyses (Lachaux,
Rodriguez, Martinerie, & Varela, 1999). Thus, building on
our prior work in fMRI (Im et al., 2017), the current study
examined the fine-scale temporal profiles of neurodynamics
in the dorsal and ventral streams during crowd emotion per-
ception and individual emotion perception. We tested our hy-
pothesis that rapid extraction of crowd emotion is mediated
by the early engagement of the dorsal visual stream in pro-
cessing global information (Peyrin et al., 2010; Schyns &
Oliva, 1994; Thomas, Kveraga, Huberle, Karnath, & Bar,
2012), motivated by the greater activations of the dorsal
stream regions for crowd emotion perception compared with
individual emotion in the previous fMRI study (Im et al.,
2017). Conversely, we expected processing in the individual
face comparison condition to predominantly activate the ven-
tral stream regions, including the fusiform face regions, as has
been observed in many studies on face perception (Haxby
et al., 1991; Im et al., 2017; Kanwisher, McDermott, &
Chun, 1997; McCarthy, Puce, Gore, & Allison, 1997).

Perceiving emotional faces and executing appropriate re-
sponses to them involves the integration of the perception,
cognition, and action stages, relying on recurrent interactions
of a number of widely distributed brain regions (for reviews,
see Dolcos, Iordan, & Dolcos, 2011; Lindquist, Wager,
Kober, Bliss-Moreau, & Barrett, 2012). Such large-scale inte-
gration and interaction could be mediated by groups of neu-
rons that oscillate within a specific frequency range or create
neural oscillation synchronies over brief time windows during
interregional communications (Hipp, Engel, & Siegel, 2011;
Lachaux et al., 1999; Sauseng&Klimesch, 2008). Thus, mea-
sures of neuronal phase synchrony can provide sensitive mea-
surements that reflect the integration and exchange of infor-
mation between brain networks (Ehlers, Wills, Desikan,
Phillips, & Havstad, 2014; Simões, Jensen, Parkkonen, &
Hari, 2003). Moreover, phase-locking in a region can provide
useful estimates of variance across trial types that are not
directly available in typical evoked response analyses, with
the benefit of being more robust against potential artifacts
and individual differences in component latencies (Tallon-
Baudry, Bertrand, Delpuech, & Pernier, 1996). Therefore,
the current study focused on frequency-specific MEG
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responses by estimating the phase synchrony of neural oscil-
lations within and between brain regions of interest (ROIs). In
our recent MEG studies (Cushing et al., 2018; Cushing, Im,
Adams Jr., Ward, & Kveraga, 2019), we have observed dif-
ferences in the strengths of α-band (8-13 Hz) versus β-band
(14-30 Hz) oscillations during perception of a fearful face
stimuli, with greater phase-locking in the α-band when the
face’s emotional expression (e.g., fear) was combined with
an ambiguous facial cue (e.g., direct eye gaze) but with greater
phase-locking in the β-band when the fearful face was com-
bined with a clear facial cue (e.g., averted eye gaze). The latter
study (Cushing et al., 2019) further showed that these syn-
chronization differences became more robust in the α-band
for faces presented to the parvocellular (P) pathway (which
projects predominantly to the ventral visual stream) and in the
beta-band for faces presented to the magnocellular (M) path-
way (whose projections dominate the dorsal visual stream),
suggesting that different social affective cues conveyed by a
single face yield different spectrotemporal profiles of the pro-
cessing streams. It is not yet clear whether these
spectrotemporal differences are the result of the cell properties
in the P and M pathways or the cortical regions to which they
predominantly project. However, motivated by these findings,
we nonetheless focused on examining the α- and β-frequency
bands to test for spectral phase-locking differences in process-
ing emotional crowds versus individual faces.

As our ROIs, we selected posterior fusiform cortex (pFusi),
posterior superior temporal sulcus (pSTS), posterior parietal
cortex (PPC), and periamygdaloid cortex (PAC). Given the
well-established, critical roles of the pFusi (including FFA)
in the ventral stream plays in face perception in general
(Fox, Moon, Iaria, & Barton, 2009; Kanwisher et al., 1997;
Kanwisher & Yovel, 2006; Rossion et al., 2003), the temporal
profile of pFusi activation was examined to characterize the
ventral stream processing that we predict to be more engaged
by individual emotion processing, based on our fMRI findings
using a similar study paradigm (Im et al., 2017). Unlike ven-
tral stream areas, such as pFusi, specific roles of subregions of
the dorsal stream in visual processing are only beginning to be
understood. To select ROIs in the dorsal stream, we likewise
relied on our prior fMRI results (Im et al., 2017) and examined
three different subregions of the dorsal stream. In our fMRI
study, we found that pSTS and PPC showed greater activa-
tions to emotional crowd stimuli, while pFusi showed greater
activations to individual emotional faces. Finally, we also in-
cluded PAC in our ROIs for the current study, because it is
part of the amygdaloid complex, which is heavily involved in
processing affective stimuli, such as emotional faces (Morris
et al., 1996; Pessoa, 2010; Zald, 2003). While we cannot be
sure whether activity from PAC is limited to the cortical layers
of the amygdaloid complex or also includes some activity
from the subcortical amygdalar nuclei, our MEG face percep-
tion studies (Cushing et al., 2018, 2019) as well as many

studies by others (Dumas, Dubal, Attal, et al., 2013;
Styliadis, Ioannides, Bamidis, & Papadelis, 2014) reliably
show activity in this region evoked by emotional faces. We
thus tested how activations of PAC, the affective processing
hub of the limbic brain, were differentially related to those of
the brain areas in the dorsal stream (PPC) and the ventral
stream (pFusi) during the social affective processing that in-
volves an individual face and a crowd of faces.

Relying on the temporal profiles of our ROIs and the inter-
region connectivity, we aimed to assess differential contribu-
tions of brain regions in the dorsal and ventral streams to the
perception of crowd emotion and individual emotion. We hy-
pothesized that if the perception of crowd emotion required
serial processing of individuated faces relying on the same
mechanism as that for individual face processing, then the
response time for crowd emotion would proportionally in-
crease as the number of faces to be processed increases.
Moreover, phase-locking would peak later for ensemble pro-
cessing compared with individual processing, possibly both in
the dorsal and ventral pathways, given a greater number of
faces to be processed. Alternatively, if the perception of crowd
emotion instead relied on efficient ensemble coding that is
distinct from single face processing, then participants’ pro-
cessing speed would not increase with the number of faces
to be processed (2 vs. 8). Moreover, phase-locking results
would show 1) earlier peaks for crowd emotion perception,
given the fact that there are many more faces to be processed
for the same duration of stimulus exposure, compared to indi-
vidual emotion perception, and 2) stronger phase-locking in
the dorsal versus ventral pathways for crowd versus individual
emotion processing, respectively.

Methods

Participants Forty-six participants (19-41 years old; 34
females and 12 males) from the Massachusetts General
Hospital (MGH) and surrounding communities participated
in this study. Thirty-eight participants were white, three were
black, and five were Asian. No subjects were excluded from
behavioral data analysis. All had normal or corrected-to-
normal visual acuity and normal color vision. Most of the
participants (41 participants among 46) were right-handed,
whereas five participants were left-handed. Participants were
first screened via a questionnaire to make sure they were eli-
gible for MEG recording and subsequentMRI structural scans
and had no history of mental illness or use of psychoactive
medication. Informed consent was obtained from the partici-
pants following the Declaration of Helsinki. The experimental
protocol was approved by the Institutional Review Board of
MGH. The participants were compensated with $50 for their
participation in this study.
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Apparatus and stimuli We kept our experimental designs,
settings, and parameters of the current study as similar to those
in our previous fMRI work (Im et al., 2017) as we could. For
face sets, we used six different identities (3 male and 3 female
faces), taken from the Ekman face set (Ekman & Friesen,
1976). We first created a set of 51 faces with different emo-
tional intensities, by morphing two highly intense facial ex-
pressions (happy and angry) of the same person using a face-
morphing software (Norrkross MorphX). The morphed face
images were controlled for luminance, and emotional expres-
sions of the morphed faces ranged from 100% happy to 100%
angry, with different proportions of morphing between the
two extreme faces by linearly interpolating in 2% increments
(Fig. 1a). The morphed face images were linearly interpolated
such that the larger the separation between any two morphed
faces was, the easier it was to discriminate the two faces.

Stimulus images were generated with MATLAB and
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). In each
crowd stimulus (shown as red outlined boxes in Fig. 1b), four
different morphed faces were chosen from the continuum of
the 51 faces. The faces were randomly positioned in the invis-
ible frame (subtending 4.42° x 6.76°) in each visual field
(right and left) on a grey background. Therefore, the facial
crowd stimuli comprised eight individual faces total. The dis-
tance between the proximal edges of the invisible frames in
the left and right visual fields was 6.76°.

We ensured that the range of emotional intensities of faces
in each set is the same 18 steps, because the previous studies
suggested that the range of variation in individual elements is
an important determinant for the ease of averaging process at
least for other visual features (e.g., size or hue; Maule &
Franklin, 2015; Utochkin, & Tiurina, 2014). This range was
determined based on our previous work (Im et al., 2017) in
which we observed that at this range 1) each face was distin-
guishable from one another within a set and 2) the taskwas not
so easy as to produce accuracy ceiling effects (e.g., overall
accuracy with approximately 65%). Using the same range also
allowed us to compare our current behavioral results to the
previous results.

Stimuli for the individual emotion trials (shown as blue
outlined boxes in Fig. 1b) comprised one emotional face (ei-
ther angrier or happier than neutral) and one neutral face (i.e.,
50% and 50% morphing of extremely happy and angry faces)
from the same set of morphed face images. Individual faces
were randomly positioned in the invisible frame with the same
size as that of the crowd stimuli in each visual field. The
offsets in emotional intensities between the emotional and
neutral faces remained the same as those in facial crowd stim-
uli. To ensure that the difference is not due to the confound of
simply having more “stuff” in crowd emotion condition com-
pared with the individual emotion condition, we included
scrambled faces in the individual emotion condition so that
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Fig. 1 Experimental designs and Behavioral results. a Examples of face
stimuli morphed from two extreme angry and happy faces of the same
person. b Sample sequence describing two experimental trials: one of
crowd emotion condition (red cuboids), and the other of individual
emotion condition (blue cuboids). Trials of crowd emotion and

individual emotion conditions were randomly intermixed. c Response
accuracy for crowd emotion (red) and individual emotion (blue) condi-
tions. d Response time for crowd emotion (red) and individual emotion
(blue) conditions.
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the same number of the face-like blobs were presented as in
the crowd emotion condition.

For both trial types (crowd emotion and individual emotion
trials), the emotional stimulus (i.e., happier or angrier than
neutral) was presented in the left visual field, and the neutral
stimulus (50% happy and 50% angry) was presented in the
right visual field on one-half of the trials. It was switched for
the other half of the trials.

Task design Stimuli were rear-projected onto a translucent
screen placed 160 cm from the seated participant to create a
61.5-cm × 38.5-cm display. From this viewing distance, 1
pixel corresponded to 0.013° of visual angle. Fig. 1b illus-
trates a sample sequence of two successive trials. A visual
stimulus, either containing individual faces or crowds of faces,
was presented for 1 second, followed by a grey blank screen
for 1.5 seconds. After the blank screen, the participants were
instructed to make a key-press using a button box connected
to the MEG system as soon as possible to indicate which of
the two crowds of faces or two single faces on the left or right
they would rather avoid. They pressed the “1” key using their
left index finger for choosing the left visual field (LVF) and
the “4” key using their right index finger for choosing the right
visual field (RVF). The key-response assignment was not
counterbalanced in order to maintain the consistent and spa-
tially coregistered stimulus-response mapping (S-R mapping:
LVF for the left key and RVF for the right key; Fitts & Seeger,
1953). The written instructions were provided at the beginning
of the experiment to explicitly inform the participants that the
correct answer was to choose either the crowd or the face
showing a more negative (e.g., angrier) emotion between the
two. Participants’ responses that were made after 2.5 seconds
were considered late and excluded from analyses of manual
accuracy and response time (RT). Feedback for correct, incor-
rect, or late responses was provided visually after each re-
sponse. Before the test session, participants completed 20
practice trials to get familiarized with the task and the trial
sequence.

MEG data acquisition Magnetoencephalogram recordings
were obtained with a 306-channel Neuromag Vectorview
whole-head system (Elekta Neuromag) with 204 planar gra-
diometers and 102 magnetometers. The MEG scanner was
enclosed in a magnetically shielded room with a shielding
factor of 250,000 at 1 Hz (ImedcoAG). Before the recording
session, four head position indicator (HPI) electrodes were
attached to four locations to monitor head position in the dew-
ar: two on each side of the forehead (right below the hairline)
and one behind and above each ear of each participant. We
also collected digitizer data by pointing the three cardinal
landmarks (nasion plus right and left pre-auricular points)
for each participant using a Polhemus FastTrack 3D system
within a head-coordinate frame. HPI positions were recorded

within this frame, and approximately 200 points on the scalp
and the face were recorded for co-registration with structural
MRIs of the participants. We also recorded participants’ car-
diac activity via ECG using two electrodes attached to the left
and right chest and their eye movements and blinks using 4
EOG electrodes: 2 vertical electrodes (one placed just above
the eyebrow, the other on the upper cheekbone just below the
eye) and 2 horizontal electrodes placed on either side of the
head between the eye and hairline. All data fromMEG sensors
and EOG and ECG electrodes were sampled at 600 Hz and
were band-pass filtered online at 0.1–200 Hz during the MEG
data acquisition.

MEG data processing

Pre-processing and averaging All recordings were pre-
processed and averaged using a combination of the MNE
analysis package (Gramfort, Luessi, Larson, et al., 2014),
MNE-Python (Gramfort, Luessi, Larson, et al., 2013; https://
mne.tools/stable/index.html), and the custom scripts both in
Python and MATLAB. To remove noise from external
sources, the signal-space projection was applied to the record-
ings (Fischl, Van Der Kouwe, Destrieux, et al., 2004; Tesche
et al., 1995; Uusitalo & Ilmoniemi, 1997). Sensors that were
visibly noisy were marked by experimenters during the re-
cording session, then excluded from the analysis. Any other
noisy or flat channels that were not picked up by experi-
menters during the recording were further inspected during
the preprocessing stage where the channels that resulted in
the rejection of 20% or more of epochs also were excluded
from further analyses. On average, 4.96 channels were exclud-
ed from the participants eventually. Rejection parameters for
further data quality inspection were set at 4,000 fT/cm for
gradiometers, 4,000 fT for magnetometers, and 800 uV for
EOG: Any epoch where any of these limits were exceeded
also was excluded from further analyses. For time-course
analysis, a low-pass filter of 40 Hz was applied, and no addi-
tional filter was applied to the raw data for phase-locking
analysis. Recordings were epoched from 100 msec before
stimulus onset until 1,000 msec post-stimulus onset. For sta-
tistical analyses, however, only time points from 0 to 500
msec were entered into statistical analyses, given that later
processing is more likely to reflect invariably widespread
propagation of signal across visual pathways (Collins,
Freud, Kainerstorfer, Cao, & Behrmann, 2019), making the
interpretation of our results more difficult. None of the partic-
ipants was excluded due to excessive numbers of rejected
trials. On average, 7.56 among 64 trials (11.8 %) for crowd
emotion condition and 7.22 among 64 trials (11.3 %) for in-
dividual emotion condition were removed from the further
analyses. We confirmed that there were no significant
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differences between the conditions for the number of removed
trials (p = 0.923).

Source localization For source localization of MEG activities,
anatomical brain images of individual participants were ob-
tained with the structural MRIs on a 1.5T Siemens Avanto 32-
channel “TIM” system. The structural MRI data were ac-
quired using T1-weighted images for the reconstruction of
each subject’s cortical surface (TR = 2,300 msec, TE = 2.28
msec, flip angle = 8°, FoV = 256 x 256 mm2, slice thickness =
1 mm, sagittal orientation). Two source spaces were separate-
ly created for each participant for surface-based source space
and volume-based source space of the bilateral amygdala
(periamygdaloid cortex; PAC), as reconstructed and segment-
ed by Freesurfer analysis package (Fischl et al., 2004). For the
surface source space, a decimated dipole grid was fitted to the
inflated white matter surface in the shape of an icosahedron
recursively divided 5 times, generating a 20,480-point grid.
Two forward solutions were then calculated, one for each
source space, using the same geometry-dependent solution
calculated from a single-compartment boundary-element
model (BEM). Sources closer than 5 mm to the inner skull
surface were excluded from the forward solution in all cases.
The MRI-head coordinate transformation for each participant
was then supplied to the forward model by aligning the digi-
tizer data obtained at the beginning of the MEG recording
session (e.g., HPI positions and approximately 200 points on
the scalp and the face of each participant), by using a high-
resolution head surface tessellation constructed from the MRI
data. The inverse operator was computed with a loose orien-
tation constraint (LOC) parameter of 0.2 to improve localiza-
tion accuracy (Lin, Belliveau, Dale, & Hämäläinen, 2006). A
depth-weighting coefficient of 0.8 also was set for the inverse
operator to lessen the tendency of minimum-norm estimates to
be localized to superficial currents in place of deep sources.
MEG data were source localized onto the whole brain using a
lambda2 regularization parameter based on Signal-to-Noise
Ratio (SNR) equal to 1/(SNR2), on a trial-by-trial basis using
the minimum-norm estimate method (MNE, Hämäläinen &
Ilmoniemi, 1994) to analyze time frequencies.

ROI selection and definition Our main regions of interest
(ROIs) were chosen based on our previous fMRI study (Im
et al., 2017) that showed differential reactivities to stimuli of
emotional crowds of faces and individual faces: posterior pa-
rietal cortex (PPC), posterior superior temporal sulcus (pSTS),
posterior fusiform cortex (pFusi). We also included
periamygdaloid cortex (PAC) because of its tight connections
with the amygdala and role in emotional processing, face per-
ception, and threat detection (Morris et al., 1996; Pessoa,
2010). Because it has been well established that face process-
ing is right-lateralized (Gazzaniga & Smylie, 1983;
Kanwisher et al., 1997; McCarthy et al., 1997; Miller,

Kingstone, & Gazzaniga, 2002), our ROI analyses of the
phase-locking maps only included the right hemisphere to
keep our comparisons simple and straightforward.

The labels for the ROIs were first functionally derived in
each individual’s anatomical space within a priori anatomical
constraints (automatic cortical and subcortical parcellations)
produced with the Freesurfer package (Fischl et al., 2004). For
all the ROIs, the functional label within the anatomical
parcellation was derived from an averaged activity from all
conditions, so that the activity was independent of trial type.
Functional labels were generated within the anatomical
parcellation corresponding to the ROI by isolating the
source-space vertex with the highest activation within the an-
atomical constraints as well as neighboring vertices in the
source-space (also within the anatomical constraints) that
reach at least 60% of the maximum activation (in dSPM
values). The detailed procedure for extracting the label for
anatomical constraint was slightly different across our ROIs,
as explained below:

& Posterior parietal cortex (PPC): We used the two labels
created from anatomical parcellation automatically gener-
ated by Freesurfer package (G_pariet_inf-Supramar and
S_intrapariet_and_P_trans; Destrieux, Fischl, Dale, &
Halgren, 2010) that covered the superior and inferior
intraparietal sulcus (IPS), respectively.

& Periamygdaloid cortex (PAC): Because no suitable a
priori parcellation of the amygdala and surrounding
periamygdaloid cortex was available, a posteriori anatom-
ical constraint was imposed in the form of user-drawn
label in the Freesurfer software on the fsaverage inflated
surface corresponding to the cortex surrounding and in-
cluding the amygdala, which we will hence refer to simply
as periamygdaloid cortex (PAC). The drawing of the PAC
labels was tracked by linking the drawn points to be
displayed on the fsaverage MRI volume in tkmedit
(https://surfer.nmr.mgh.harvard.edu/fswiki/tkmedit) to
ensure that only the cortical surface corresponding to the
amygdalae was included in the label. These anatomical
constraints were then morphed to each individual’s
inflated surface and used to generate functional PAC
labels according to the preceding procedure.

& Posterior superior temporal sulcus (pSTS): The posterior
portion of STS as the a priori parcellation generated by
Freesurfer extended beyond the true pSTS on many sub-
jects’ cortical surfaces to inferior sulci. Thus, user-drawn
labels were created: User-marked constraints on the
fsaverage inflated surface were marked around STS and
tracked in the fsaverageMRI volume. The samemorphing
procedure from above was used, and then the label was
split into thirds (anterior, medial, and posterior). The most
posterior third was then taken as each individual’s pSTS to
be used as the anatomical constraint.
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& Posterior fusiform cortex (pFusi): For pFusi labels, we
first extracted anatomical labels from automatic
parcellation (G_oc-temp_lat-fusifor; Destrieux et al.,
2010) then split the label into three parts (anterior, medial,
and posterior) using the python script, mne.split_label
(https://mne.tools/stable/generated/mne.split_label.html).
The most posterior third was then taken as each
individual’s pFusi to be used as the anatomical
constraint when generating the functional pFusi labels.

MEG data analysis Time courses were produced for each ROI
by averaging the activity (dSPM) from source-space vertices
that fell within the label marked on the individual’s inflated
cortical surface, separately for the crowd emotion and individ-
ual emotion conditions. From each participant’s time course
data of source estimates, the time point of the peak amplitude
also was obtained by using the mne-python function,
stc.get_peak, within the time window of 0–500 msec after
stimulus onset. The peak latency estimates in the crowd emo-
tion and individual emotion conditions were then submitted to
correlation coefficient analyses along with the participants’
mean response times for the crowd emotion and individual
emotion conditions, respectively.

For phase-locking analysis, the Phase-Locking Factor
(PLF) across trials was calculated for each ROI, and Phase-
Locking Value (PLV) was calculated to assess functional con-
nectivity between PAC and the other ROIs using modified
scripts from the MNE-Python package (Gramfort et al.,
2013). The PLF is a number between 0 and 1 (1 representing
perfect synchrony) that represents a magnitude-normalized
measure of the phase angle consistency across trials for a
particular time-point at a particular frequency (Lachaux
et al., 1999). This number was obtained by source localizing
each epoch into source space using the Minimum-Norm
Estimate (MNE) method with the sign of the signal preserved.
Source-space MNE epochs were then entered into spectral
decomposition at each time point for each frequency of inter-
est, using a continuous wavelet transformation with a family
of complex morlet wavelets containing a number of cycles
equal to f/7, where f denotes the frequency of interest. This
keeps the time window at each frequency identical, resulting
in stable temporal resolution across frequency ranges. We
analyzed frequencies from 8 Hz (representing the lower limit
of the α-band) to 30 Hz (representing the upper limit of the β-
band). Similarly, interregional connectivity was assessed with
PLVs, also a magnitude-normalized measure of phase-angle
consistency across trials between two different ROIs. This
was calculated with the same parameters on the same frequen-
cies as above (8–30 Hz).

E. Statistical Analysis To test our main hypothesis for differ-
ential neurodynamics underlying crowd emotion and

individual emotion processing, we performed non-
parametric comparisons based on t-tests for crowd emotion
versus individual emotion conditions. Phase-locking maps
for each participant (2-dimensional images with the x-axis
indicating time after stimulus onset and the y-axis indicating
frequency that corresponded to phase-locking values) were
smoothed via a Gaussian image filter with a kernel size of 5
and a sigma of 2 before being submitted to permutations and
statistical analyses. All statistics were computed using non-
parametric cluster-level permutation tests based on 3,000 per-
mutations with a critical α-value of 0.05. Condition labels for
each participant were randomly shuffled to split the data into
two halves to ensure that the condition label for phase-locking
map of each participant was randomized, but no one subject
ended up having both phase-locking maps falling under the
same condition. The permuted statistical maps were
thresholded at an alpha-level of 0.05 with 45 degrees of free-
dom to identify clusters. Among observed clusters, those with
contiguous supra-threshold time-frequency points whose
masses were exceeded by 5% or less of clusters from the null
distribution were considered significant. All the time points
between 0 and 500 msec were submitted to analysis, with the
range of frequencies from 8 to 30 Hz included for the frequen-
cy domain.

Results

Behavioral results: fast processing of crowd emotion Fig. 1c
and d summarize the 46 participants’ behavioral accuracies
and responses times for the crowd emotion (red bar graphs)
and individual emotion (blue bar graphs) conditions. The
overall accuracies for both crowd emotion and individual
emotion conditions were significantly higher than chance
(crowd vs. chance: 72.9% vs. 50%; individual vs. chance:
81.1% vs. 50%; all p values < 0.001; Fig. 1c). Unlike previous
studies that have reported the equivalent (or greater) accuracy
for crowd perception compared to individual face perception
(Im et al., 2017; Li et al., 2016; Leib et al., 2014), we found a
slight drop in the behavioral accuracy for crowd emotion com-
pared with individual emotion conditions. The accuracy for
individual emotion condition was significantly higher than
that for crowd emotion condition (t(90) = 6.12, p < 0.001,
η2 = 0.294). One possible explanation for this inconsistency
that we observed in participants’ response accuracies could be
related to an intriguing perceptual asymmetry in the upper and
lower visual fields (Kahn & Lawrence, 2005; Thomas &
Elias, 2011). Specifically, it has been reported that the upper
visual field (UVF) advantage occurs for local processing and
visual inspection or search of an individual object (Previc &
Blume, 1993), whereas the lower visual field (LVF) advan-
tage occurs for global processing, motion perception, and spa-
tial judgements (Christman, 1993; Danckert & Goodale,
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2001; Niebauer & Christman, 1998; Previc, 1990). Due to the
specific settings of the MEG scanner in our facility (Athinoula
A.Martinos Center, Boston,MA) with the lowered position of
a chair to fit in the sensor helmet attached to the MEG scanner
and the floor standing display that was taller than the height of
the sensor helmet, the participants’ viewpoints were always
lower than the center fixation of the screen, although they
were always in the middle in the horizontal axis. This is a
unique constraint we had in the current study, as opposed to
most of the previous studies on ensemble perception in which
participants’ viewpoints were strictly controlled to be centered
in both x- and y-dimensions during behavioral testing (Chong
& Treisman, 2003; Im et al., 2016; Li et al., 2016; Leib et al.,
2014) and fMRI scanning with the supine position (Cant &
Xu, 2012, 2014; Im et al., 2017). Thus, the participants were
looking upward to see the stimuli during the entire MEG re-
cording in the current study with the whole stimuli presented
in their upper visual field, which possibly facilitated individ-
ual emotion processing relative to crowd emotion processing.
To validate this speculation, future research will be needed to
examine whether the upper visual field versus lower visual
field presentation can selectively facilitate the perception of
crowd emotions and individual emotion, respectively.

As shown in Fig. 1d, the response times (RTs) for the
crowd emotion and individual emotion conditions did not sig-
nificantly differ from each other (1.076 sec vs. 1.023 sec: t(90)
= 1.531, p = 0.129, η2 = 0.025). This is consistent with the
previous reports that ensemble coding can occur as fast as, or
somewhat faster than, processing of a single item in visual
stimuli comprised of faces (Haberman et al., 2009; Im et al.,
2017; Leib et al., 2014) and dots (Ariely, 2001). The relative
lack of a decrease in RT for deciding between two individual
faces (one in each visual field) in the individual emotion con-
dition and eight faces (four in each visual field) in the crowd
emotion condition suggest that crowd emotion from eight
faces can be extracted as a whole in a parallel manner, not
necessarily relying on serial processing of individuals (Im
et al., 2017).

MEG results: Temporal profiles of dorsal and ventral areas
during crowd and individual emotion processing Figure 2
shows the group average (N = 46) of noise-normalized dy-
namic statistical parametric maps (dSPMs) of the whole brain
during the crowd emotion and individual emotion processing
(thresholded at dSPM > 4.6) at the two different time points:
70 msec (Fig. 2a) and 370 msec (Fig. 2b) after stimulus onset.
As early as 70 msec after stimulus onset, dSPM activations of
the posterior parietal cortex (PPC) was predominant in the
crowd emotion condition, but not in the individual emotion
condition, suggesting relatively early engagement of the PPC
in the processing of crowd emotion. Later at 370 msec after
stimulus onset, the dSPM of the periamygdaloid cortex (PAC)
and the posterior fusiform cortex (pFusi), as well as the medial

frontal areas, increased in the crowd emotion condition, while
the PPC activation decreased. Earlier activation of PPC in the
crowd emotion condition (but not in the individual condition)
suggests that rapid extraction of crowd emotion can be initial-
ly mediated by the PPC area, followed by the involvement of
the ventral stream areas in relatively later stages of crowd
emotion processing. Unlike the crowd emotion processing,
the individual emotion processing did not show the early onset
of the PPC area at 70 msec after stimulus onset. The later
activation of the pFusi and other ventral stream areas (includ-
ing the inferior and middle temporal regions) at 370 msec after
stimulus onset, however, was more salient and extensive in
the individual emotion condition compared with the crowd
emotion condition. Relatively greater engagement of the
PPC areas and pFusi areas in crowd emotion processing and
individual emotion processing, respectively, also has been ob-
served in our prior work using fMRI (Im et al., 2017). The
current findings, however, describe the novel findings on tem-
poral dynamics of activity in PPC, pFusi, and PAC during the
processing of crowd emotion and individual emotion.

We also computed correlations between the participants’
response times and peak latencies of the dSPM values for
crowd emotion and individual emotion conditions, separately.
The correlation coefficients (Pearson’s r) were calculated be-
tween the 46 participants’ mean response times and the peak
latency estimates from the three of our ROI labels – pFusi and
the two subregions of the PPC, superior and inferior
intraparietal sulcus (IPS). For the crowd emotion condition,
we found statistically significant, positive correlations
(corrected for multiple comparisons) between the participants’
response times and the peak latencies of the superior IPS (r =
0.567, p < 0.0001) and between their response times and the
peak latencies of the inferior IPS (r = 0.466, p = 0.0013), but
not the peak latencies of the pFusi activation (r = 0.014, p =
0.926). For the individual emotion condition, however, none
of the correlation coefficients was statistically significant (all r
< 0.320, all p > 0.032). Thus, early onset of activity in the PPC
appears to be associated with participants’ response speed but
only in the crowd emotion condition.

Although this was not the primary focus of our investiga-
tion, we also observed different patterns of hemispheric later-
alization at the two time points. At 70 msec after stimulus
onset, the dSPMs were quite symmetrical in the left and right
hemispheres, with suprathreshold activity visible mostly in the
crowd emotion condition (Fig. 2a, left panel). At the later time
point (370msec), we observed right hemisphere dominance in
the dSPM of the inferior temporal and visual areas, particular-
ly in the individual emotion condition.

Phase-locking results We next examined the time courses of
our ROIs (PPC, pFusi, pSTS, and PAC) in more detail by
looking at the phase-locking patterns when these ROIs were
engaged in the processing of crowd emotion and individual
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emotion. Although there is direct communication between the
dorsal and ventral visual pathways at multiple stages and lo-
cations (Distler, Boussaoud, Desimone, & Ungerleider, 1993;
Nassi & Callaway, 2009; Rosa et al., 2009; Webster,
Bachevalier, & Ungerleider, 1994; Zhong & Rockland,
2003), information processing after a widespread cascade of
information and long-range feedback modulations between
the processing streams in later stages (Givre, Schroeder, &
Arezzo, 1994; Oram & Perrett, 1996; Schroeder, Mehta, &
Givre, 1998) is particularly ambiguous and challenging to
interpret.

Because our main goal was to establish the temporal pre-
cedence of activations in the dorsal stream tomediate the rapid
extraction of crowd emotion, we focused on the earlier seg-
ments of the time course, between 0 and 500 msec after stim-
ulus onset to examine early, stimulus-evoked activity, rather
than later components. To identify differential temporal dy-
namics of crowd emotion processing and individual emotion
processing, we directly compared the time courses in the alpha
and beta frequency bands from the phase-locking data (PLF;
phase-locking factor) across trials for each of our ROIs during
crowd emotion versus individual emotion processing. The
PLF is a number between 0 and 1 (1 representing perfect
synchrony) that represents a magnitude-normalized measure
of the phase angle consistency across trials for a particular
time-point at a particular frequency (Lachaux et al., 1999).

Figure 3 shows differences in amplitude of PLFs in both
the alpha and beta-bands during the perception of crowd
emotion (red clusters) versus individual emotion (blue clus-
ters) for each of the ROIs. We only plot statistically signif-
icant clusters at nonparametric p < 0.05, corrected for mul-
tiple comparisons. Compared with individual emotion con-
dition, crowd emotion condition showed earlier and greater
PLFs most ly in the be ta -band, as shown in the

periamygdaloid cortex (PAC, Fig. 3a), the posterior superi-
or temporal sulcus (pSTS, Fig. 4b), and the two subregions
(superior intraparietal sulcus and inferior intraparietal sul-
cus) of the posterior parietal cortex (PPC, Fig. 3c), and the
posterior fusiform cortex (pFusi, Fig. 3d). Specifically, the
right PAC (Fig. 3a) showed greater PLFs for crowd emotion
condition with a peak at about 170 msec (cluster around
155-218 msec) after stimulus onset in the beta-band (be-
tween 13 Hz and 30 Hz), followed by greater and sustained
PLFs for individual emotion processing with an initial peak
at approximately 250 msec (cluster between 205-295 msec)
mostly in the alpha-band. Similarly, the right pSTS (Fig. 3b)
showed greater PLFs for crowd emotion condition which
reached a peak at approximately 157 msec (cluster around
137-196 msec) in both alpha- and beta-bands, whereas
greater PLFs for individual emotion condition reached a
peak much later, at approximately 351 msec (cluster around
285-385 msec), predominantly in the alpha-band. The two
Freesurfer labels that split the posterior parietal cortex
(PPC; Fig. 3c and d) into inferior and superior intraparietal
sulcus showed earlier peaks for greater PLFs during crowd
emotion processing compared with individual emotion pro-
cessing than any other ROIs. In the inferior intraparietal
sulcus (IPS; Fig. 3c), we observed that the significantly
greater PLFs for crowd emotion condition reached a peak
at approximately 82 msec (cluster between 68-118 msec)
across both alpha and beta-bands, followed by a later peak
greater for individual emotion condition at approximately
272 msec (cluster around 230-295 msec) in the alpha-band.
In the other subregion of PPC, superior IPS (Fig. 3d), we
only found significantly greater PLFs for crowd emotion
condition, which reached a peak at approximately 121 msec
(cluster around 103-130 msec) in the beta-band and at ap-
proximately 168 msec (cluster around 160-188 msec) in the

Crowd emotion Individual emotion Crowd emotion Individual emotion
LH RH LH RH LH RH LH RH

dSPM:
N=46

dSPM:
N=46

PPC

PAC PAC

Pfusi

Pfusi

a b

Fig. 2 Dynamic statistical parametric map (dSPM) at two different time
points (70 msec and 370 msec) after stimulus onset. Group averages (N =
46) are overlaid on the surface of FSAverage template. a dSPM at 70
msec after stimulus onset in the crowd emotion condition (the left

column) and individual emotion condition (the right column). b dSPM
at 370 msec after stimulus onset in the crowd emotion condition (the left
column) and individual emotion condition (the right column)
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alpha-band, suggesting that this area was mostly engaged in
crowd emotion processing and less so in individual emotion
processing. Finally, the posterior fusiform cortex (pFusi;
Fig. 3e) showed an early, brief peak at approximately 113
msec (cluster around 106-143 msec) in the beta-band for
crowd emotion processing, followed by later processing be-
ginning at approximately 365 msec (cluster starting from
245 msec) for individual emotion processing, mostly in
the alpha-band. Table 1 shows a comprehensive list of the
timing of the statistically significant clusters in each of these
ROIs separately for crowd emotion and individual emotion
processing. Earlier emergence of greater PLFs in our ROIs
during crowd emotion condition than individual emotion
condition suggests that crowd emotion processing in the
dorsal stream is not simply a consequence of activity prop-
agating from sustained individual emotion processing in the
ventral stream. Rather, the dorsal stream areas appear to be
engaged predominantly in crowd emotion processing, par-
ticularly early on, and this activity occurs before or concur-
rently with the involvement of face-selective areas in the
ventral stream (e.g., pFusi). While we did not find clear
spectral separation of activity evoked by crowd and individ-
ual emotion processing, there appears to be a tendency for
the former to peak in a slightly higher frequency band, at
least in some of our ROIs (PAC, posterior fusiform cortex).

Connectivity between periamygdaloid cortex and cortical re-
gions in the dorsal and ventral pathways Any complex pro-
cessing requires the integration of numerous functional areas
widely distributed over the brain, usually via phase-locked
oscillatory interactions (Friston, Stephan, & Frackowiak,
1997; Tonini & Edelman, 1998). To better understand how
the brain processes a given task, it is necessary not only to

look at the temporal profiles of activation in each region indi-
vidually but also to examine how these regions interact over
time. Therefore, we next examined the phase-locking between
our ROIs as a measure of interregional functional connectivity
to build a more complete picture of the neurodynamics at play
between PAC and the brain regions in the dorsal stream (e.g.,
PPC) and the ventral stream (e.g., pFusi) to gain insights into
how the amygdaloid complex interacts with the dorsal and
ventral stream regions during processing of crowd emotion
and individual emotion.

Figure 4 shows the PLVs (phase-locking values) between
the periamygdaloid cortex and the superior intraparietal sulces
in the dorsal stream (e.g., PAC and superior IPS; Fig. 4a) and
the periamygdaloid cortex and the posterior fusiform cortex in
the ventral stream (e.g., PAC and pFusi; Fig. 4b). Between the
PAC and the PPC (Fig. 4a), we found earlier and greater peaks
in PLVs in the alpha-band around 233-262 msec with a peak
at approximately 246 msec for crowd emotion condition,
followed by later increase in the PLVs for individual emotion
condition, both at the alpha-band (earlier peak at around 328-
357 msec) and the beta-band (later peak at around 367-402
msec). On the other hand, between the PAC and the pFusi
(Fig. 4b), we found that the synchronization order related to
crowd versus individual emotion processing was reversed:
namely, earlier, greater PLVs in the alpha-bandwere observed
for individual emotion condition (at around 105-129 msec),
followed by later, greater PLVs in the beta-band for crowd
emotion condition (at around 395-464 msec). Together,
phase-locking in the amygdala-dorsal stream network (e.g.,
PAC and PPC) and the amygdala-ventral stream network
(e.g., PAC-pFusi) reflects differential temporal dynamics un-
derlying crowd emotion and individual emotion processing.
Finally, crowd emotion processing showed greater beta-band
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Fig. 3 Statistical maps of phase-locking across trials (0-500 msec after
stimulus onset), showing significant contrasts (nonparametric p < 0.05,
corrected for multiple comparisons) between crowd emotion (red clus-
ters) versus individual emotion (blue clusters) conditions in each of the

ROIs: a Right periamygdaloid cortex (PAC). b Right posterior superior
temporal sulcus (pSTS). c Right inferior intraparietal sulcus (inferior IPS,
a subset of PPC). d Right superior intraparietal sulcus (superior IPS, a
subset of PPC). e Right posterior fusiform cortex (pFusi)
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(frequency range of 13-30 Hz) involvement during the neural
synchronies between PAC and pFusi, just as observed in
single-region phase-locking patterns of PAC and pFusi (see
red clusters in the beta-bands of Fig. 3a and e).

Discussion

We used magnetoencephalography (MEG) to characterize
temporal dynamics of brain regions in the dorsal stream
(e.g., posterior parietal cortex [PPC]) and the ventral stream
(e.g., posterior fusiform cortex [pFusi]), as well as the

periamygdaloid complex (PAC) during the processing of
crowd emotion from groups of faces and individual emotion
of single faces. To summarize our main findings, we reported
that 1) MEG (dSPM) measurements showed early onset of
activity in the posterior parietal cortex, predominantly in the
crowd emotion condition, followed by a later activation of
posterior fusiform cortex in the individual emotion condition;
2) the behavioral response times for crowd emotion condition
were positively correlated with the peak latency of the PPC
areas; 3) all of our ROIs (PAC, pSTS, PPC, and pFusi)
showed earlier phase-locking measurements (PLFs) for crowd
emotion processing compared with individual emotion pro-
cessing; 4) the interaction between PAC and PPC
(amygdala-dorsal stream connectivity) revealed earlier
phase-locking for crowd emotion processing, followed by sig-
nificant phase-locking for individual emotion processing later;
and 5) the interaction between PAC and pFusi (amygdala-
ventral stream connectivity) revealed early phase synchrony
for individual emotion processing, followed by the later beta-
band phase synchrony for crowd emotion processing. Our
findings suggest that the crowd emotion perception exhibits
distinct neurodynamics patterns from those mediating the pro-
cessing of single emotional faces to support a rapid social
affective judgment during a brief exposure.

This paper reported that the dorsal and ventral ROIs (PPC,
pSTS, and pFusi) that we examined showed different patterns
of activity while subjects were comparing crowd emotion and
individual emotional face stimuli, consistent with our prior
fMRI study (Im et al., 2017). Importantly, the current MEG
findings add new information about the timing and dynamic
interactions of activity in these regions during the perception
of crowd emotion and individual emotion. These findings
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Fig. 4 Significant phase-locking between ROIs in the crowd emotion
condition (red clusters) and individual emotion condition (blue clusters),
from 0msec to 500 msec after stimulus onset. a Significant phase-locking
between the right periamygdaloid cortex (PAC) and the right superior
intraparietal sulcus (PPC). b Significant phase-locking between the right
periamygdaloid cortex (PAC) and the right posterior fusiform cortex
(pFusi)

Table 1 Timing of significant differences in activation within ROIs from 0 msec and 500 msec after stimulus onset. Reported p-values are
nonparametric and corrected based on cluster permutations, thresholded at p < 0.05)

ROI Contrast Peak (msec) Time range (msec) p value

Periamygdaloid cortex (PAC) Crowd > Individual 170 155-218 p < 0.001

Individual > Crowd 250 205-295 p < 0.0001

Individual > Crowd 318-500 msec p < 0.0001

Posterior superior temporal sulcus (pSTS) Crowd > Individual 157 msec 137-196 msec p < 0.0001

Individual > Crowd 351 msec 285-385 msec p < 0.01

Posterior parietal cortex (PPC)

Inferior intraparietal sulcus (IPS) Crowd > Individual 82 msec 68-118 msec p < 0.0005

Individual > Crowd 272 msec 230-295 msec p < 0.01

Individual > Crowd 342 msec 310-355 msec p < 0.001

Superior intraparietal sulcus (IPS) Crowd > Individual 121 msec 103-130 msec p < 0.0001

168 msec 160-188 msec p < 0.0001

Individual > Crowd None n.s.

Posterior fusiform cortex (pFusi) Crowd > Individual 113 msec 106-143 msec p < 0.001

Individual > Crowd 360 msec 340-370 msec p < 0.001

Individual > Crowd 380-500 msec p < 0.0001
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together suggest that there exist two distinct processing routes
at play: a faster processing route via the dorsal stream and a
slower processing route via the ventral stream. The two pro-
cessing routes—faster and slower—in the dorsal and ventral
streams appear to be engaged in both processing of crowd
emotion and individual emotion but in qualitatively distinct
temporal profiles and different functional connectivities to a
subcortical region (e.g., PAC). Our finding that the onset of
activations and neural synchronies in our ROIs during the
processing of crowd emotion preceded those during the pro-
cessing of individual emotion also is well in line with the
notion that perceiving crowd emotion from multiple faces
relies on fast and efficient ensemble coding. Just as in many
previous studies (Haberman et al., 2009; Im et al., 2017; Leib
et al., 2014), our behavioral data showed that participants’
responses were not significantly delayed with more faces to
be processed (up to 8 faces in the current study). However,
how such efficient, fast coding of crowd emotion as an en-
semble can occur has been an unanswered question. By ex-
amining fine-scale temporal profiles of neural processes un-
derlying crowd emotion perception, the current MEG study
can suggest that the efficiency of crowd emotion processing
can be achieved by earlier engagement of multiple brain areas
and faster dynamic interactions between them. Although past
research studies on ensemble coding have focused mostly on
identifying types of visual features that can be extracted as
ensembles (e.g., size, orientation, numerosity, color, facial
emotion, gender, identity, and age, etc.) and characterizing
compositions of ensemble representations (e.g., average, var-
iance, median, or range, etc.), our current findings emphasize
the importance of examining temporal profiles (e.g., process-
ing speeds) in which ensemble processing contrasts sharply
with the processing of individual objects. Therefore, the cur-
rent findings provide novel neuroimaging evidence for the
long-standing framework that perceptual averaging is accom-
plished in a qualitatively different way, possibly as parallel,
holistic processing (Ariely, 2001; Baek & Chong, 2020;
Chong et al., 2008), instead of relying on serial processing
of a few individual object representations by subsampling
heuristics (Maule & Franklin, 2016; Myczek & Simons,
2008). Ensemble coding of facial crowds may use qualitative-
ly and functionally different visual representations, instead of
the mere sum or a part of singular representations of each
emotional face.

It should be noted that our phase-locking results represent
direct contrasts of spectrotemporal profiles between crowd
emotion and individual emotion perception focused on signif-
icant differences between the time courses for these condi-
tions. Thus, our results do not imply that there was no dorsal
stream activity at all during individual face comparisons.
Instead, our results show that the dorsal visual stream could
differentiate a facial crowd and an individual as early as 68
msec, preferentially responding to facial crowds over

individual faces. Previous neuroimaging studies have shown
that emotional stimuli (e.g., fear) of facial expressions or body
movements preferentially activate the dorsal visual stream,
suggesting a tighter functional link between the emotion and
action, compared with neutral emotion (de Gelder, Snyder,
Greve, Gerard, & Hadjikhani, 2004; Huis In’t Veld & de
Gelder, 2015). It also was reported that fearful body expres-
sions activated the dorsal stream more strongly, whereas hap-
py expressions preferentially activated the ventral stream (de
Borst & de Gelder, 2016). Another MEG study also reported
that the dorsal visual stream regions showed greater activation
for a fearful body expression than neutral, emerging as early
as 80 msec (Meeren et al., 2016). Together, our study presents
further empirical evidence that the dorsal visual stream is
highly attuned to visual representations that are emotionally
expressive and action-relevant. The functional distinction be-
tween the dorsal and ventral streams during social-emotional
visual processing appears to be modulated flexibly depending
on the valence and type of stimuli, rather than serving as
specialized modular systems for a particular type of visual
inputs.

In a classical framework, distinct functions for the “vi-
sion for action” and “vision for perception” were associated
with the dorsal and ventral streams, respectively (Goodale
et al., 1994; Goodale & Milner, 1992; Milner & Goodale,
2008). According to this framework, different social-
emotional visual stimuli can engage either visual stream
depending on its principal behavioral motivation of the pro-
cessing. For example, some social-emotional stimuli have
relatively greater ecological values for fast, action-oriented
processing, such as fearful stimuli, collective and coherent
social signals, or clear threat cues (Cushing et al., 2018; de
Borst & de Gelder, 2016; de Gelder et al., 2004) than others
(e.g., neutral or happy expressions and ambiguous facial
cues). A crowd’s overall emotion that we tested in the cur-
rent study also appears to convey such behavioral signifi-
cance to observers, driving stronger action-oriented signals
than an individual’s emotion does. Indeed, the average di-
rection of eye gaze in a crowd of people is more effective
than an individual’s eye gaze for directing one’s attention
(Gallup et al., 2012), suggesting that social information
conveyed by a crowd amplifies our social reactions
(Sweeny & Whitney, 2014). Along the same line, greater
involvement of the dorsal stream in ensemble coding of
multiple emotional faces may reflect that visual representa-
tion of crowd emotion provides stronger cues for context-
relevant and time-sensitive action preparation and execu-
tion, as suggested in a previous study on perception of in-
teractive body movements in a crowd (Huis In’t Veld & de
Gelder, 2015). Given that the visual system can process
only a limited number of objects (no more than four; Luck
& Vogel, 1997), however, stimuli containing multiple, dif-
ferent faces are not as suitable as a single face for real-time
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person recognition and identification, which is a dominant
function of the ventral visual stream (Tsao & Livingstone,
2008). Our findings suggest that the fast and efficient cod-
ing of the average emotion of facial crowds can preferen-
tially activate action-oriented signals (e.g., avoiding an an-
gry mob) by projecting the “quick and dirty” global repre-
sentation to the dorsal processing stream.

By investigating different temporal dynamics of the
ROIs in the dorsal (PPC and pSTS) and ventral (pFusi)
streams, the current findings also highlight the roles of
the dorsal pathway in visual information processing. It
has been unclear whether visual representations of objects,
such as faces, in the dorsal pathway result from indepen-
dent computation or whether they simply reflect the pro-
jection of information processed in the ventral pathway.
For example, one notion is that visual representations of
the shape of objects in the dorsal regions are the output of
computations in the occipitotemporal cortex, which the
posterior parietal cortex only “uploads” from the ventral
pathway depending on the current task goal (see Xu,
2018a and 2018b for reviews). Alternatively, others sug-
gest that visual shape information is at least partially com-
puted independently in each of the two major pathways
(see Freud, Plaut, & Behrmann, 2016, for review). The
current findings are consistent with the notion that the dor-
sal visual pathway plays more active and independent roles
in supporting and mediating different units of visual rep-
resentations (e.g., ensembles and individuals) than it has
been traditionally proposed. For example, we observed that
the inferior intraparietal sulcus (IPS), one of the two sub-
regions of the PPC in the dorsal stream, showed early
phase-locking related to crowd emotion processing com-
pared with individual emotion processing, starting from 68
msec after stimulus onset and preceding any other ROIs we
tested. This is impossible if the dorsal stream were merely
the recipient of information represented in the ventral
stream.

What roles do the regions in the dorsal stream network play
during the crowd emotion processing, in parallel to the ventral
stream? One possibility is that magnocellular input, which is
more dominant in the dorsal stream than the ventral stream
(although the dorsal pathway also receives parvocellular and
koniocellular inputs; Nassi, Lyon, & Callaway, 2006; Sincich,
Park, Wohlgemuth, & Horton, 2004), benefits crowd emotion
processing by being better suited for global information pro-
cessing with a fast readout time. The magnocellular pathway
is known to be highly sensitive to low-spatial frequency infor-
mation (Derrington & Lennie, 1984; Tootell, Silverman,
Hamilton, Switkes, & De Valois, 1988), transmits faster
(Breitmeyer, 1975; Lupp, Hauske, & Wolf, 1976), and is crit-
ical for global processing (Hughes, Fendrich, & Reuter-
Lorenz, 1990; Hughes, Nozawa, & Kitterle, 1996). Rapid
global representation via magnocellular input to the dorsal

stream can contribute to the rapid extraction of ensemble fea-
tures, including those involved in perceiving crowd emotion.
Besides, rapid transmission of magnocellular signals has also
been suggested to facilitate slower processing for object rec-
ognition in the ventral stream (e.g., fusiform gyrus) by en-
abling early predictions or “initial guess” via top-down guid-
ance or modulation (Bar et al., 2006; Kveraga, Boshyan, &
Bar, 2007; Tapia & Breitmeyer, 2011). Our findings in the
current study suggest that the dorsal stream is engaged in an
early stage of perceptual processing, perhaps relying on rapid
magnocellular input to form a global representation of the
stimulus emotion.

At the level of attentional selection, the dorsal stream can
also play a critical role in the processing of crowd emotion and
individual emotion by rapidly activating different parietal atten-
tional mechanisms prior to object processing of the ventral
stream. The dorsal visual stream is known to play major roles
in the rapid and efficient visuospatial orienting of attention and
the deployment of attentional resources (Marrett et al., 2011;
Sciberras-Lim & Lambert, 2017; Siegel, Donner, Oostenveld,
Fries, & Engel, 2008). Therefore, it would be important that the
dorsal stream is actively involved in the visual processing of
perception of crowd emotion and individual emotion for effi-
cient deployment of attention. It has been suggested that en-
semble perception and individual object processing rely on dif-
ferent attentional modes: non-selective, distributed attention
versus focused attention for a selectivemechanism, respectively
(for review, see Baek & Chong, 2020; Chong & Evans, 2011;
Wolfe et al., 2011). The early engagement of the dorsal visual
stream may signify that different attentional modes—
distributed or focused—can be selectively activated by its at-
tentional network that precedes and facilitates visual processing
of crowd emotion and individual emotion.

Finally, another important aspect of visual processing of
the dorsal stream regions (e.g., parietal cortex) is that it is
closely linked to the ability to track task demand and in-
tention (Snyder, Batista, & Andersen, 2000; Toth & Assad,
2002). For example, fMRI response amplitude in the supe-
rior IPS in the dorsal stream tracks behavioral visual work-
ing memory capacity for various task-relevant visual fea-
tures (e.g., color and shape, etc.: Todd & Marois, 2004,
2005; Xu & Chun, 2006; Jeong & Xu, 2013; see also Xu
& Jeong, 2015). Previous fMRI data also suggest that the
human parietal cortex participates in the moment-to-
moment goal-directed visual representation of faces, in-
variant to changes in low-level visual features and view-
points (Jeong & Xu, 2016).

Conclusions

Our new findings on differential temporal dynamics in the
dorsal and ventral stream activations provide a new

Cogn Affect Behav Neurosci



framework encompassing the two visual pathways that differ-
entially contribute to complementary visual functions: the
ventral stream, including the fusiform cortex that mediates
the detailed visual perception of individual emotional faces
and the dorsal stream including the posterior parietal cortex
that allows for rapid, global, and goal-driven representations
of crowd emotion.\
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